MuPIF
MuPIF is open-source, modular, object-oriented integration platform allowing to create complex, distributed, multiphysics simulation workflows across the scales and processing chains by combining existing simulation tools. MuPIF uses Python 3.5 standards and is independent on operating system (Linux, UNIX, Windows, Mac, …).
MuPIF utilizes an object-oriented approach, with abstract classes defining standardized interfaces introduced to represent simulation models and data types.
This concept allows to manipulate and steer all models using generic interface. It will also allow to abstract from a particular internal data representation of a data type, including storage and location.
In turn, the models working with the data obtain required information from data objects using services, rather than obtaining them by interpreting raw data (which yields the data format dependence). One can think of abstract classes as representing data as “data bricks” with standardized connectors able to be used in their appropriate place in workflows to represent abstract data containers.
MuPIF achieves interoperability with standardization of application and data component interfaces and it is not reliant on standardized data structures or protocols. Any existing data representation or simulation model can be plugged in and used transparently, provided the corresponding data interface is implemented.
Even though the platform can be used locally on a single computer orchestrating installed applications, the real strength of the MuPIF platform is its distributed design, allowing to execute simulation scenarios involving remote applications and data. MuPIF provides a transparent distributed object system, which takes care of the network communication between the objects when they are distributed over different machines on the network.
The simulation workflows are implemented as Python scripts built on top of MuPIF. The graphical workflow editor is available to make the workflow implementation more accessible and convenient.
MuPIF highlights
Design based on interacting, distributed components (objects), representing simulation models, workflows, and data (such as properties, spatial fields, microstructures, etc.)
Instead of trying to standardize data structures, MuPIF is focused on identification and standardization of component services
Data, metadata and services (algorithms) operating on data encapsulated in a component are exchanged between applications → Models will get data and operations on data in one consistent package, do not have to interpret data themselves
MuPIF components can be local as well as remote objects → distributed workflows, distributed data, enabling business model based on software or data as service and marketplaces integration
MuPIF supports SSL or VPN based secure communication and data exchange
Interfacing to commercial, closed source as well as open source simulation tools and databases.
MuPIF comes with own database solution (MuPIFDB) to track and store simulations and workflow scheduler. Both tools come with REST
API allowing easy integration
Graphical workflow editor
Documentation & Resources
-
Three webinars on MuPIF platform design, installation, and use are available on
MMP project website and also available on YouTube:
-
-
How to get MuPIF
The easiest installation happens through Python Package Index (pip) which takes care of dependencies and installs/updates missing modules automatically. Run as a command
pip install mupif
Alternatively, you may download and install MuPIF from git repository.
License
MuPIF is available under GNU Library or Lesser General Public License version 3.0 (LGPLv3)
Support
Authors & Credits
Mupif developpers:
Contact: Borek.Patzak(at)cvut.cz
-
B. Patzák. Design of a multi-physics integration tool. In B. H. V. Topping, J. M. Adam, F. J. Pallares, R. Bru, and M. L. Romero, editors, Proceedings of the Seventh International Conference on Engineering Computational Technology, Stirlingshire, United Kingdom, 2010. Civil-Comp Press. paper 127.
B. Patzak, V. Smilauer, and G. Pacquaut, presentation & paper “Design of a Multiscale Modelling Platform” at the 15 th International Conference on Civil, Structural, and Environmental Engineering Computing, 1st - 4th of September 2015, Prague (Czech Republic).
B. Patzák, V. Šmilauer, M. Apel, R. Altenfeld, L. Thielen, A. Lankhorst,
Multi-Physics Integration Framework MuPIF – design, operation and application to simulate CIGS thin film growth for photovoltaics, 2nd International Workshop on Software Solutions for ICME, April 2016, Barcelona, Spain.
B. Patzák, V. Šmilauer and M. Horák. MuPIF: Multi-Physics Integration Platform. 6th European Conference on Computational Mechanics (ECCM 6), Glasgow, 2018.
S. Belouettar, C. Kavka, B. Patzák, H. Koelman, G. Rauchs, G. Giunta, A. Madeo, S. Pricl, S. et al. Integration of material and process modelling in a business decision support system: Case of COMPOSELECTOR H2020 project. Composite Structures, 204, 778-790, 2018.
Projects using MuPIF
Events
Course
We offer intensive, one-day course on multi-scale and multi-physics modeling using MuPIF platform. The course covers following topics:
Fundamentals of MuPIF philosophy, design, and structure
MuPIF installaton on different platforms
Application interface explained, connecting existing applications
Developping custom simulation scenarios
Practical session on platform usage
Acknowledgements
Access counter:
(Since May, 2016)