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2. Introduction 

MuPIF (​www.mupif.org​) is an integration framework, that facilitates the implementation of           
multi-physic and multi-level simulation workflows, built from independently developed         
components. MuPIF is open source, distributed under LGPL license. 
 
The approach followed in the MuPIF is based on an system of distributed, interacting objects               
designed to solve given problem. The individual objects represent entities in the problem             
domain, including individual simulation packages, but also the data, such as fields and             
properties. The abstract classes are introduced for all entities in the model space [1]. They               
define a common interface, called API, that needs to be implemented by any derived class,               
representing particular implementation of specific component. Such interface concept allows          
using any derived class on a very abstract level, using common services defined by abstract               
class, without being concerned with the implementation details of an individual software            
component. The APIs have been developed not only for individual models, but also for              
simulation data, like spatial fields, properties, etc. 
 
The complex simulation pipeline developed in MuPIF-platform consists of top-level script in            
Python language [3] (called scenario) enriched by newly introduced classes. Later in the project,              
the top level script will be generated using a graphical tool. In principle, any control script can be                  
recasted into a class implementing Application class interface, so that it could itself represent an               
application in MuPIF platform. Such an approach would allow building a hierarchy of nested              
applications. The application steering and data exchange will be realized in a standard way by               
calling individual services (methods). In case of distributed environments, a transparent           
communication layer is provided, as described in the subsection on Distributed environments.            
The software design of the platform has been described in [5,6,7]. 
 
Even though the platform can be used locally on a single computer orchestrating installed              
applications, the real strength of the MuPIF platform is its distributed design, allowing to execute               
simulation scenarios involving remote applications. The concept of so called proxy object that             
represent remote objects allows to hide all the details of remote data exchange and execution to                
the user. In turn, only minimal change of local simulation scenarios is required when distributed               
resources are included. The distributed model is described in Section ​Distributed Model​. 
 

3. Platform installation 

3.1. Prerequisites 

3.1.1. Windows platforms 

● We suggest to install Anaconda scientific python package, which includes Python  ≥3.4, 
https://store.continuum.io/cshop/anaconda/ 

● Ssh client: putty.exe is recommended,​ ​http://www.putty.org/ 
● Optionally ssh key generator: puttygen.exe is recommended,​ ​http://www.putty.org/ 
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● Optionally ssh server if you need to accept SSH incoming connections and allowing 
others to be on your system. FreeSSHd server is recommended, 
http://www.freesshd.com/ 

3.1.2. Linux / Unix (*nix) platforms 

● The Python (Python ≥3.4) installation is required. 
● You can download the python installation package from 

https://www.python.org/downloads/​. Just pick up the latest version in the 3.x series 
(tested version 3.5.2). 

● We recommend to install ​pip​ - a tool for installing and managing Python packages. If not 
already installed as a part of your python distribution, the installation instructions can be 
found​ ​here​. 

● Ssh client (normally included in standard distributions) 
● Optionally ssh server (required for application server installation) 
● VPN server or VPN client if VPN connection is preferred, e.g. 

https://openvpn.net/index.php/open-source/downloads.html 

3.1.3. General requirements 

● MuPIF platform depends/requires, besides others, Pyro4 and numpy modules. They can 
be installed separately for a particular system or using ​pip​. If you install the whole MuPIF 
package, it takes care automatically for all dependencies. However, using ​git​ repository 
requires those Python modules to installed separately. For example, to install Pyro4 
version 4.54: 

pip install Pyro4==4.54 

● MuPIF platform requires pyvtk  (tested 0.4.85) python module. To install this module 
using ​pip​: 

pip install pyvtk 

●  MuPIF requires enum34 module, which can be installed also using ​pip​: 

pip install enum34 

3.1.4. Other recommended packages/softwares 

● Paraview (tested 4.2.0), visualization application for vtu data files, 
http://www.paraview.org/ 

● Windows: Notepad++ (tested 6.6.9),​ ​http://notepad-plus-plus.org/ 
● Windows: conEmu, windows terminal emulator, 

https://code.google.com/p/conemu-maximus5/ 

3.2. Installing the MuPIF platform 

The recommended procedure is to install platform as a python module using ​pip​: 

pip install mupif 
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This type of installation automatically satisfies all the dependencies. 
 
Alternatively, the development version of the platform can be installed from ​git​ repository: 

● We recommend to install git, a open source revision control tool. You can install git using 
your package management tool or download installation package directly from​ ​git 
website​. 

● Once you have git installed, just clone the MuPIF platform repository into a directory 
"mupif-code": 

git clone https://github.com/mupif/mupif.git mupif 

 

3.3. Verifying platform installation 

3.3.1. Running unit tests 

MuPIF platform comes with unit tests. To run unit tests we recommend to install ​nose python                
module, which facilitates automatic discovery and execution of individual tests. To install node             
module using pip: 

pip install nose  

 
This will install the nose libraries, as well as the​ ​nosetests​ script, which can be used to execute 
the unit tests. From top level MuPIF installation directory enter: 

cd tests 
nosetests -v 

 
You should see output something like this: 

test_containsPoint (mupif.tests.test_BBox.BBox_TestCase) ... ok 
test_intersects (mupif.tests.test_BBox.BBox_TestCase) ... ok 
test_merge (mupif.tests.test_BBox.BBox_TestCase) ... ok 
test_containsPoint (mupif.tests.test_Cell.Triangle_2d_lin_TestCase) ... ok 
test_geometryType (mupif.tests.test_Cell.Triangle_2d_lin_TestCase) ... ok 
test_glob2loc (mupif.tests.test_Cell.Triangle_2d_lin_TestCase) ... ok 
test_interpolate (mupif.tests.test_Cell.Triangle_2d_lin_TestCase) ... ok 
….. 
testOctreeNotPickled (mupif.tests.test_saveload.TestSaveLoad) ... ok 
---------------------------------------------------------------------- 
Ran 82 tests in 2.166s 
 
OK 
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Indicating that ​nose​ found and ran listed tests successfully. 

3.3.2. Running examples 

In addition, the platform installation comes with many examples, that can be used to verify the                
successful installation as well, but they also serve as an educational examples illustrating how              
to use the platform. The examples are located in examples subfolder. For example, to run               
Example01: 
 

cd examples/Example01 
python Example01.py 

 

4. Platform operations 

The complex simulation pipeline developed in MuPIF-platform consists of top-level script in            
Python language (called scenario) enriched by newly introduced classes. These classes           
represent fundamental entities in the model space (such as simulation tools, properties, fields,             
solution steps, interpolation cells, units, etc). The top level classes are defined for these entities,               
defining a common interface allowing to manipulate individual representations using a single            
common interface. The top level classes and their interface is described in platform Interface              
Specification document [1]. 
 
In this document, we present a simple, minimum working example, illustrating the basic concept.              
The example presented in this section is assumed to be executed locally. How to extend these                
examples into distributed version is discussed in the section ​8. Distributed Model​. 
 
The presented example in Listing 1 illustrates an example of so called weak-coupling, where for               
each solution step, the first application (Application1) evaluates the value of concentration that             
is passed to the second application (Application2) which, based on provided concentration            
values (PropertyID.PID_Concentration), evaluates the average cumulative concentration       
(PropertyID.PID_CumulativeConcentration). This is repeated for each solution step. The         
example also illustrates, how solution steps can be generated in order to satisfy time step               
stability requirements of individual applications.  
 

from mupif import * 
import application1 
import application2 
 
time  = 0 
timestepnumber=0 
targetTime = 1.0 
 
app1 = application1.application1(None) # create an instance of application #1 
app2 = application2.application2(None) # create an instance of application #2 
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# loop over time steps 
while (abs(time -targetTime) > 1.e-6): 

#determine critical time step 
dt2 = app2.getCriticalTimeStep() 
dt = min(app1.getCriticalTimeStep(), dt2) 
#update time 
time = time+dt 
if (time > targetTime): 
 #make sure we reach targetTime at the end 
 time = targetTime 
timestepnumber = timestepnumber+1 

 
# create a time step 
istep = TimeStep.TimeStep(time, dt, timestepnumber) 

 
try: 
 #solve problem 1 
 app1.solveStep(istep) 
 #request temperature field from app1 
 c = app1.getProperty(PropertyID.PID_Concentration, istep) 
 # register temperature field in app2 
 app2.setProperty (c) 
 # solve second sub-problem 
 app2.solveStep(istep) 

prop = app2.getProperty(PropertyID.PID_CumulativeConcentration, istep) 
print ("Time: %5.2f concentraion %5.2f, running average %5.2f" %  

(istep.getTime(), c.getValue(), prop.getValue())) 
 

 except APIError.APIError as e: 
 logger.error("Following API error occurred: %s" % e ) 
 break 

 
# terminate 
app1.terminate(); 
app2.terminate(); 

Listing 1: Simple example illustrating simulation scenario 
 

The full listing of this example can be found in ​examples/Example01​. The output is illustrated in 
Fig. 1. 
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Fig. 1: Output from Example01.py 

 
The platform installation comes with many examples, located in ​examples​ subdirectory of 
platform installation and also accessible ​online​ in the platform repository. They illustrate various 
aspects, including field mapping, vtk output, etc.  
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5. Platform APIs 

In this chapter are presented the abstract interfaces (APIs) of abstract classes that have been               
designed to represent basic building blocks of the complex multi-physics simulations, including            
individual simulation packages, but also the high level complex data (such as spatial fields and               
properties). The abstract base classes are defined for all relevant entities. Their primary role is               
to define abstract interfaces (APIs), which allow manipulating individual objects using generic            
interface without being concerned by internal details of individual instances. One of the key and               
distinct features of the MuPIF platform is that such an abstraction (defined by top level classes)                
is not only developed for individual models, but also defined for the simulation data themselves.               
The focus is on services provided by objects and not on underlying data. The object               
representation of data encapsulates the data themselves, related metadata, and related           
algorithms. Individual models then do not have to interpret the complex data themselves; they              
receive data and algorithms in one consistent package. This also allows the platform to be               
independent of particular data format, without requiring any changes on the model side to work               
with new format. 
 
In the rest of this section, the individual abstract classes and their interfaces are described in                
detail. For each class a table is provided, where on the left column the individual services and                 
their arguments are presented, following the Pydoc [7] syntax. In the right column, the              
description of individual service is given, input arguments are described (denoted by ARGS)             
including their type (in parenthesis). The return values are described in a similar way (denoted               
by Returns). More extensive documentation of MuPIF abstract classes exist in MuPIF            
documentation [8]. 

5.1. Application class 

This abstract class represents an external application and defines its interface. The interface is              
defined in terms of abstract services for data exchange and steering. Derived classes represent              
individual simulation tools. The data exchange services consist of methods for getting and             
registering external properties, fields, and functions, which are represented using          
corresponding, newly introduced classes. Steering services allow invoking (execute) solution for           
a specific solution step, update solution state, terminate the application, etc. 
 

 
Service 

 

 
Description 

 

__init__ (self, file) 

 
Constructor. Initializes the application. 

ARGS​: 

- file (str): path to application 

initialization file. 
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getField(self,fieldID, time) 

 
Returns the requested field at given time. Field is 

identified by fieldID. 

ARGS​: 

- fieldID (FieldID): identifier 

- Time (double): target time 

Returns​: Returns requested field (Field).

 

setField(self, field) 

 
Registers the given (remote) field in application. 

ARGS​: 

- field (Field): remote field to be registered 

by the application 

Returns​:​ ​None  

getProperty(self,propID, 

time, objectID=0) 

 

Returns property identified by its ID evaluated at 

given time. 

ARGS​: 

- propID (PropertyID): property ID 

- time (double): time when property to be 

evaluated 

- objectID (int): identifies object/submesh on 

which property is evaluated (optional) 

Returns​: Returns representation of requested 

property (Property). 

setProperty(self, 
property, 
objectID=0) 
 

Register given property in the application 

ARGS​: 

- property (Property): the property class 

- objectID (int): identifies object/submesh on 

which property is evaluated (optional) 

Returns​:​ ​None  

getFunction(self,funcID, 

objectID=0) 

 

Returns function identified by its ID 

ARGS​: 

- funcID (FunctionID): function ID 

- objectID (int): identifies optional 

object/submesh 

Returns​: Returns requested function(Function)

 

setFunction(self,func, 

objectID=0) 

 

Register given function in the application 

ARGS​: 

- func(Function): function to register 

- objectID (int): identifies optional 

object/submesh  
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getMesh (self, tstep) 

 
Returns the computational mesh for given solution 

step. 

ARGS​: 

- tstep(TimeStep): solution step 

Returns​: Returns the representation of mesh (Mesh)

 

solveStep(self, tstep, 

stageID=0, 

runInBackground=False) 

 

Solves the problem for a given time step. Evaluates 

the solution from actual state to given time. 

The actual state should not be updated at the end, 

as this method could be called multiple times for 

the same solution step until the global convergence 

is reached. When global convergence is reached, 

finishStep is called and then the actual  state has 

to be updated. 

Solution can be split into individual stages 

identified by optional stageID parameter. In between 

the stages, the additional data exchange can be 

performed. See also wait and isSolved services. 

 
ARGS​: 

- tstep(TimeStep): solution step 

- stageID(int): optional argument identifying 

solution stage 

- runInBackground(bool): if set to True, the 

solution will run in background (in separate 

thread), if supported.  
Returns​: None 

wait(self) 

 
Wait until solve is completed when executed in 

background. 

Returns​: None  

isSolved(self) 

 
Returns true or false depending whether solve has 

completed when executed in background. 

Returns​: (Boolean)  

finishStep(self, tstep) 

 
Called after a global convergence within a time 

step. 

ARGS​: 

- tstep(TimeStep): solution step 

Returns​: None 

getCriticalTimeStep(self) 

 
Returns the actual (related to the current state) 

critical time step increment (double). 

Returns​: Critical time step (double) 
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getAssemblyTime(self, tstep) 

 
Returns the assembly time related to a given time 

step. The registered fields (inputs) should be 

evaluated in this time. 

ARGS​: 

- tstep (TimeStep): solution step 

Returns​: Assembly time (double) 

storeState(self, tstep) 

 
Store the solution state of an application. 

ARGS​: 

- tstep(TimeStep): solution step

 
Returns​: None 

restoreState(self, tstep) 

 
Restore the saved state of an application. 

ARGS​: 

- tstep(TimeStep): solution step 

Returns​: None 

terminate(self) 

 
Terminates the application.  
Returns​: None 

getAPIVersion(self) 

 
Returns the supported API version. 

Returns​:​ ​API version (int) 

5.2. Property class  

Property is a characteristic value of a problem, which has no spatial variation. Property is               
identified by ​PropertyID​, which is an enumeration determining its physical meaning. It can             
represent any quantity of a scalar, vector, or tensorial type. Property keeps its value, type,               
associated time and an optional ​objectID​, identifying related component/subdomain. 
 

 
Service 

 

 
Description 

 

__init__(self, value, 

propID, valueType, time, 

objectID=0) 

 

Constructor, initializes the property. 

ARGS​: 

- value (tuple): value of a property. Scalar 

value is represented as array of size 1. Vector 

is represented as values packed in a tuple. 

Tensor is represented as 3D tensor stored in a 

tuple, column by column. 

- propId (PropertyID): property ID 

- valueType (ValueType): type of property value 

- time (double): time 
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- objectID (int): optional ID of problem object / 

subdomain to which property is related.  

getValue(self) 

 
Returns the value of property in a tuple. 

Returns​:​ ​Property value as array (tuple)  

getPropertID(self) 

 
Returns type of property. 

Returns​:​ ​Receiver property ID (PropertyID) 

getObjectID(self) 

 
Returns property objectID. 

Returns​:​ ​ID of related object (int) 
 

 

5.3. Field class  

Representation of field. ​Field is a scalar, vector, or tensorial quantity defined on a spatial               
domain (represented by the ​Mesh class). The field provides interpolation services in space, but              
is assumed to be fixed in time (the application interface allows to request field at specific time).                 
The fields are usually created by the individual applications (sources) and being passed to              
target applications. The field can be evaluated in any spatial point belonging to underlying              
domain. Derived classes will implement fields defined on common discretizations, like fields            
defined on structured or unstructured FE meshes, finite difference grids, etc. Basic services             
provided by the field class include a method for evaluating the field at any spatial position and a                  
method to support graphical export (creation of VTK dataset). 
 

Service Description 

__init__(self, mesh, fieldID, 

valueType, time, values=None) 

 

Constructor. Initializes the field instance. 

ARGS​: 

- mesh (Mesh): Instance of Mesh class 

representing underlying discretization. 

- fieldID (FieldID): field type 

- valueType (ValueType): type of field values 

- time (double): time 

- values (tuple): field values, usually at mesh 

vertices (format dependent of particular 

field type) 

getMesh(self) 

 
Returns representation of underlying 

discretization. 

Returns​:​ ​Reference to associated mesh (Mesh)
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getValueType(self) 

 
Returns type of field values (ValueType) of the 

receiver. 

Returns​:​ ​(ValueType) 

getFieldID(self) Returns​:Field ID (FieldID) 

evaluate(self, position, 

eps=0.001) 

 

Evaluates the receiver at given spatial position. 

ARGS​: 

- position (tuple, list of tuples): 3D position 

vector or list of position vectors 

- eps(double): Optional tolerance 

Returns​: Receiver value or list of values evaluated 

at given position(s) (tuple, list of tuples) 

getValue(self, componentID) 

 
Returns the value associated to given component 

(vertex or cell IP, implementation dependent). 

ARGS​: 

- componentID (tuple): identifies the 

component (vertexID) or (CellID, IPID) 

Returns​: component value (tuple) 

setValue(self, componentID, 

value) 

 

Sets the value associated to given component 

(vertex or cell IP). Note, that the field values 

are updated after a commit method is invoked. 

ARGS​: 

- componentID (tuple):  The componentID is a 

tuple: (vertexID) or (CellID, IPID) 

- value(tuple): Component value  
Returns​:​ ​None 

commit(self) 

 
Commits the recorded changes (via setValue method). 

Returns​:   None 

merge(self, field) 

 
Merges the receiver with a given field together. 

Both fields should be on different parts of the 

domain (can also overlap), but should be of the 

same type and refer to the same underlying 

discretization. 

ARGS​: 

- field (Field): field to merge 

Returns​:  None 

field2VTKData (self) 

 
Returns VTK representation of the receiver. 

Returns​: 

    ​VTK dataset (VTKDataSource) 
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5.4. Function class  

Represents a user defined function. Function is an object defined by mathematical expression             
and can be a function of spatial position, time, and other variables. Derived classes should               
implement evaluate service by providing a corresponding expression. The function arguments           
are packed into a dictionary, consisting of pairs (called items) of keys and their corresponding               
values. 
 

Service Description 

__init__(self,funcID, 

objectID=0) 

 

Constructor. Initializes the function. 

ARGS​: 

- funcID (FunctionID): function ID  

- objectID (int): optional ID of associated subdomain. 

evaluate (self, d) 

 
Evaluates the function for given parameters packed as a 

dictionary. A dictionary is container type that can store 

any number of Python objects, including other container 

types. Dictionaries consist of pairs (called items) of keys 

and their corresponding values. 

 
Example:  

d={'x':(1,2,3), 't':0.005} initializes dictionary containing 

tuple (vector) under 'x' key, double value 0.005 under 't' 

key. 

Some common keys:  
-  ​'x': position vector 

- 't': time 

ARGS​: 

- d (dictionary): dictionary containing function 

arguments (number and type depends on particular 

function) 

RETURNS​: function value (tuple) evaluated for given 

parameters 

getID (self) 

 
Returns receiver's ID. 

Returns​: id (FunctionID)  

getObjectID(self) Returns​:​ ​returns receiver's object ID (int) 

 

5.5. TimeStep class  

Class representing solution time step. The time step manages its number, target time, and time 
increment. 
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Service Description 

__init__(self, t, dt, n=1) 

 
Constructor. Initializes the new time step. 

ARGS​: 

- t (double): time 

- dt (double): step length (time increment) 

- n (int): time step numbeR 

getTime(self) 

 
Returns​: Time step time (double) 

getTimeIncrement(self) 

 
Returns​: time increment (double)  

getNumber(self) Returns​:​ ​receiver's number (int) 

 

5.6. Mesh class  

Mesh class is an abstract representation of a computational domain and its spatial             
discretization. The mesh geometry is described using computational cells (representing finite           
elements, finite difference stencils, etc.) and vertices (defining cell geometry). Derived classes            
represent structured, unstructured FE grids, FV grids, etc. Mesh is assumed to provide a              
suitable instance of cell and vertex localizers. In general, the mesh services provide different              
ways how to access the underlying interpolation cells and vertices, based on their numbers, or               
spatial location. 
 

 
Service 

 

 
Description 

 

__init__(self) Constructor, creates an empty mesh. 

copy(self) 

 
This will return a copy of the receiver. Note, that 

DeepCopy will not work, as individual cells contain 

mesh link attributes, leading to underlying mesh 

duplication in every cell. 

Returns​:​ ​Copy of receiver (Mesh) 

getNumberOfVertices(self) 

 
Returns​: 

 ​Number of Vertices (int)  

getNumberOfCells(self) 

 
Returns​: 

 Number of Cells  
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getVertex(self, i) 

 
Returns i-th vertex (i corresponds to a vertex 

number, not a label). 

Returns​:​ ​vertex (Vertex)  

getCell(self, i) 

 
Returns i-th cell (identified by cell number, not 

label). 

Returns​:​ ​cell (Cell) 

vertexLabel2Number(self,  

label) 

 

Returns local vertex number corresponding to given 

label. If no label corresponds, throws an exception. 

Returns​:​ ​vertex number (int)  

cellLabel2Number(self, 

label) 

 

Returns local cell number corresponding to a given 

label. If no label corresponds, it throws an 

exception. 

Returns​:​ ​cell number (int) 

getVerticesInBBox 

(self, bbox): 

 

Returns the list of all vertices which are inside 

given bounding Box 

ARGS​: 

- bbox (BoundingBox): bounding box 

Returns​:​ ​list of vertices inside bbox (list)  

getCellsInBBox (self, 

bbox): 

 

Returns the list of cells which bbox intersects with 

given bounding box 

ARGS​: 

- bbox (BoundingBox): bounding box 

Returns​:​ ​list of cells at least partially in bbox 
(list) 

evaluateVertices(self, 

functor): 

 

Returns the list of all vertices for which the 

functor is satisfied. The functor is a user defined 

class with two methods: ​giveBBox​() which returns an 

initial functor bbox, and ​evaluate​ (obj) which should 

return true if functor is satisfied for a given 

object. 

ARGS​: 

- functor: functor class 

Returns​:list of all vertices for which the functor is 

satisfied (list) 

evaluateCells(self, 

functor): 

 

Returns the list of all cells for which the functor 

is satisfied. The functor is user defined  class with 

two methods:​getBBox​() which returns an initial 

functor bbox, and ​evaluate​ (obj) which should return 

true if functor is satisfied for given object. 

ARGS​: 
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- functor: functor class 

Returns​:List of all cells for which the functor is 

satisfied (list) 

 

5.7. Cell class  

Representation of a computational cell (finite element). The solution domain is composed of 
cells, whose geometry is defined using vertices. Cells provide interpolation over their associated 
volume, based on given vertex values. Derived classes will be implemented to support common 
interpolation cells (finite elements, FD stencils, etc.) 
 

Service Description 

__init__(self, mesh, number, label, 

vertices) 
Constructor. Creates the new cell. 

ARGS​: 

- mesh(Mesh): the mesh to which cell 

belongs. 

- number(int): local cell number 

- label(int): cell label 

- vertices(tuple): cell vertices (local 

numbers) 

copy(self) 

 
This will copy the receiver, making deep 

copy of all attributes EXCEPT mesh 

attribute 

Returns​:​ ​the copy of receiver (Cell) 

getVertices(self)  Returns​:​ ​the list of cell vertices (tuple of 
Vertex instances)  

containsPoint(self, point)  
 

Returns​: True if cell contains given point, 

False otherwise  

getGeometryType(self) 

 
Returns​:​ ​geometry type of receiver 
(CellGeometryType) 

getBBox(self) Returns​:​ ​bounding box of the receiver (BBox) 

 

5.8. Vertex class  

Represents a vertex. In general, a set of vertices defines the geometry of interpolation cells. A                
vertex is characterized by its position, number and label. Vertex number is locally assigned              
number (by ​Mesh​ class), while a label is a unique number defined by application. 
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Service Description 

__init__(self, number, label, 

coords=None) 

 

Constructor. Creates the new vertex 

instance. 

ARGS​: 

- number(int): local vertex number 

- label(int): vertex label 

- coords(tuple): 3D position vector of 

verteX  

getCoordinates(self) Returns​:​ ​receiver coordinates (tuple) 

getNumber(self) Returns​:​ ​receiver number (int) 

getLabel(self) Returns​:​ ​receiver label (int) 

 

5.9. BoundingBox  

Represents an axis aligned bounding box - a rectangle in 2d and a prism in 3d. Its geometry is                   
described using two points - lover left and upper right. The bounding box class provides fast and                 
efficient methods for testing whether point is inside and whether an intersection with another              
bounding box exists. 
 

 
Service 

 

 
Description 

 

__init__(self, coords_ll, 

coords_ur) 

 

Constructor. Creates the new Bounding box instance. 

ARGS​: 

- coords_ll (tuple): coordinates of lower left 

corner 

- coords_ur (tuple): coordinates of upper right 

corner 

containsPoint (self, point) 

 
Returns true if point inside receiver. 

 
ARGS​: 

- point (tuple): point coordinates 

Returns​:​ ​True if point is inside receiver, false 
otherwise (Bool) 

intersects (self, bbox) 

 
Returns​:​ ​Returns true if receiver intersects given 
bounding box (Bool) 
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merge (self, entity) 

 
Merges (expands) receiver with given entity 

(position or bbox) 

ARGS​: 

- entity (tuple or BoundingBox): position 

vector (tuple) or bounding box. 

Returns​:​ ​None 

 

5.10. APIError 

This class serves as a base class for exceptions thrown by the framework. Raising an exception                
is a way to signal that a routine could not execute normally - for example, when an input                  
argument is invalid (e.g. value is outside of the domain of a function) or when a resource is                  
unavailable (like a missing file, a hard disk error, or out-of-memory errors). A hierarchy of               
specialized exceptions can be developed, derived from the ​APIError​ class. 
Exceptions provide a way to react to exceptional circumstances (like runtime errors) in programs              
by transferring control to special functions called handlers. To catch exceptions, a portion of              
code is placed under exception inspection. This is done by enclosing that portion of code in a                 
try-block. When an exceptional circumstance arises within that block, an exception is thrown             
that transfers the control to the exception handler. If no exception is thrown, the code continues                
normally and all handlers are ignored. 
An exception is thrown by using the throw keyword from inside the try-block. Exception handlers               
are declared with the keyword "except", which must be placed immediately after the try block. 
 

Service Description 

__init__(self,msg) 

 
Constructor. Initializes the exception. 

ARGS​: 

- msg (string) Error message 

 

__str__(self) 

 
Returns​: 

  ​string representation of the exception, ie. error message 
(string). 
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6. Developing Application Program Interface (API) 

In order to establish an interface between the platform and external application, one has to               
implement an Application class. This class defines a generic interface in terms of general              
purpose, problem independent, methods that are designed to steer and communicate with the             
application. The Table 2 presents an overview of application interface, the full details with              
complete specification can be found in ​5.1. Application class​ specification.  
 

Method Description 

__init__(self, file) Constructor. Initializes the application. 

getMesh (self, tstep) Returns the computational mesh for given 
solution step. 

getField(self, fieldID, time) Returns the requested field at given time. 
Field is identified by fieldID. 

setField(field) Registers the given (remote) field in 
application. 

getProperty(self, propID, time, objectID=0) 
 

Returns property identified by its ID evaluated 
at given time. 
 

setProperty(self, property, objectID=0) 
 

Register given property in the application 

setFunction(self, func,objectID=0) 
 

Register given function in the application 

solveStep(self, tstep) Solves the problem for given time step. 

finishStep(self, tstep) Called after a global convergence within a 
time step. 
 

getCriticalTimeStep() Returns the actual critical time step 
increment. 

getApplicationSignature() Returns the application identification 

terminate() Terminates the application. 

Table 2: Application interface: an overview of basic methods. 
 
From the perspective of individual simulation tool, the interface implementation can be achieved 
by means of either direct (native) or indirect implementation.  
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● Native implementation requires a simulation tool written in Python, or a tool with             
Python interface. In this case the Application services will be implemented directly using             
direct calls to suitable application’s functions and procedures, including necessary          
internal data conversions. In general, each application (in the form of a dynamically             
linked library) can be loaded and called, but care must be taken to convert Python data                
types into target application data types. More convenient is to use a wrapping tool (such               
as Swig [5] or Boost [6]) that can generate a Python interface to the application,               
generally taking care of data conversions for the basic types. The result of wrapping is a                
set of Python functions or classes, representing their application counterparts. The user            
calls an automatically generated Python function which performs data conversion and           
calls the corresponding native equivalent. 

● Indirect implementation ​is based on wrapper class implementing Application interface          
that implements the interface indirectly, using, for example, simulation tool scripting or            
I/O capabilities. In this case the application is typically standalone application, executed            
by the wrapper in each solution step. For the typical solution step, the wrapper class has                
to cache all input data internally (by overloading corresponding set methods), execute            
the application from previously stored state, passing input data, and parsing its output(s)             
to collect return data (requested using get methods).  

 
Fig. 2: Illustration of indirect approach  

 
The example illustrating the indirect implementation is available from MuPIF distribution, located            
in ​examples/Example03 ​directory. Typically, this is a three-phase procedure. In the first step,             
when external properties and fields are being set, the application interface has to remember all               
these values. In the second step, when the application is to be executed, the input file is to be                   
modified to include the mapped values. After the input file(s) are generated, the application itself               
is executed. In the last, third step, the computed properties/fields are requested. They are              
typically obtained by parsing application output and returned. This three-step procedure is            
illustrated in the following example listing taken from Example03. In this example, the             
application should compute the average value from mapped values of concentrations over the             
time. The external application is available, that can compute an average value from the input               
values given in a file. The application interface accumulates the mapped values of             
concentrations in a list data structure, this is done is setProperty method. During the solution               
step in a solveStep method, the accumulated values of concentrations over the time are written               
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into a file, the external application is invoked taking the created file as input and producing an                 
output file containing the computed average. The output file is parsed when the average value               
is requested using getProperty method.  
 

 
Fig. 3: Typical workflow in indirect approach for API implementation 

 

7. Developing user workflows 

Multiscale/multiphysics simulations are natively supported in MuPIF, allowing easy data passing           
from one model to another one, synchronizing and steering all models. Simulation workflow of              
multiscale/multiphysics simulations, called also a simulation scenario, defines data flow among           
various models and their steering. Natively, the workflow in MuPIF is represented as Python              
script combining MuPIF components into workflow. However, a many benefits can be further             
gained by implementing a workflow as class derived from abstract ​Workflow class. The benefits              
and example are discussed in chapter “​Workflow as a class​”. 
 

7.2 Workflow templates 
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Sequential workflow template 

 

 

Loosely coupled workflow template 
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7.3 Workflow example 

 
A thermo-mechanical, multiphysical example ​Demo13.local.py explains linking and steering in          
greater detail. The example presents a local (non-distributed) version and can be found under              
examples/Example13-thermoMechanicalNonStat​ directory of MuPIF installation. 
 
A cantilever, clamped on the left hand side edge, is subjected to nonstationary temperature              
loading, see Figure 4. Heat convection is prescribed on the top edge with ambient temperature               
10°C. Left and bottom edges have prescribed temperature 0°C, the right edge has no boundary               
condition. Initial temperature is set to 0°C, heat conductivity is 1 W/m/K, heat capacity 1.0               
J/kg/K, material density 1.0 kg/m​3​. The material has assigned Young's modulus as 30 GPa,              
Poisson's ratio 0.25 and coefficient of linear thermal expansion 12e-6°C​-1​. Integration time step             
is constant as 1 s, 10 steps are executed in total. 
 
 
 

 
Fig. 4: Elastic cantilever  subjected to thermal boundary conditions. 

 
First, the temperature distribution has to be solved in the whole domain from the given initial and                 
boundary conditions. The temperature field is passed afterwards to the mechanical analysis,            
which evaluates the corresponding displacement field. Such simulation flow is depicted in            
Figure 5, linking two models in discretized time steps. The thermal model implements             
getField(T) and ​solveStep(istep) methods. In addition, the mechanical model needs to set up an              
initial thermal field ​setField(T) prior to execution in each time step. Steering occurs in 1s               
increments, calling thermal and mechanical models. 
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Fig. 5: Thermo-mechanical simulation flow 

 
The discretizations for thermal and mechanical problems are in this particular case different and              
the platform takes care of field interpolation. The mesh for thermal problem consist of 50 linear                
elements with linear approximation and 55 nodes. The mesh for mechanical analysis consist of              
168 nodes and 160 elements with linear approximation. Results for 10 s are shown in Figure 6. 
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Fig. 6: Results of thermo-mechanical simulation at 10 s 

 
A code below shows a thermo-mechanical simulation in ​Example13​. Thermal and mechanical            
solvers are implemented as ​demoapp module and loaded from ​Example10 directory. It is             
straightforward to extend this workflow for distributed version which needs in addition a             
nameserver and VPN/ssh tunnels, as described in subsequent chapters. 
 

from __future__ import print_function 
import sys 
sys.path.append('../../..') 
from mupif import * 
from mupif import logger 
sys.path.append('../Example10') 
import demoapp 
 
time  = 0. 
dt = 0. 
timestepnumber = 0 
targetTime = 10.0 
 
thermal = demoapp.thermal_nonstat('inputT13.in','.') 
mechanical = demoapp.mechanical('inputM13.in', '.') 
 
while (abs(time - targetTime) > 1.e-6): 
 

logger.debug("Step: %g %g %g"%(timestepnumber,time,dt)) 
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istep = TimeStep.TimeStep(time, dt, timestepnumber) 
 

try: 
 thermal.solveStep(istep) 
 f = thermal.getField(FieldID.FID_Temperature, istep.getTime()) 
 data = f.field2VTKData().tofile('T_%s'%str(timestepnumber)) 
 
 mechanical.setField(f) 
 sol = mechanical.solveStep(istep) 
 f = mechanical.getField(FieldID.FID_Displacement, istep.getTime()) 
 data = f.field2VTKData().tofile('M_%s'%str(timestepnumber)) 
 
 thermal.finishStep(istep) 
 mechanical.finishStep(istep) 
 
 dt = min (thermal.getCriticalTimeStep(), mechanical.getCriticalTimeStep()) 
 
 # update time 
 time = time+dt 
 if (time > targetTime): 
 time = targetTime 
 timestepnumber = timestepnumber+1 
 

except APIError.APIError as e: 
 logger.error("Following API error occurred:",e) 
 break 
 
thermal.terminate(); 
mechanical.terminate(); 

Listing 2: ​Example13​ showing a thermo-mechanical simulation 
 
As already mentioned, the thermo-mechanical simulation chain can run in various           
configurations, composed of a steering script, nameserver, thermal and mechanical          
applications. Table 3 shows MuPIF examples of thermo-mechanical configuration. In principle,           
each component can run on different computer, except a steering script. 
 

 Steering 
script 

Nameserver Thermal 
application 

 
 

Mechanical 
application

 

Example13 local Local - Local Local 

Example14 VPN Local Remote Remote Remote 

Example15 ssh JobMan Local Remote Remote JobMan Local 
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Example16 VPN JobMan Local Remote Remote JobMan Local 

Table 3: Examples of thermo-mechanical simulation on local and various distributed 
configurations. 

 
 
 

7.4 Workflow as a class 

The object oriented design of MuPIF allows to build a hierarchy of workflows, where the top                
level workflow may utilise the components, which may be again workflows. From this point of               
view, any workflow can be regarded as an application, composed from individual components,             
implementing itself an application interface. The application interface, as introduced in Chapter            
on Platform APIs, allows to perform any data and steering operation, i.e. to get and set any                 
data, update response for the given solution step, etc.  
Another important advantage of having workflow represented as a class is that the individual              
workflows can be allocated and executed by a jobManager on remote resources in a same way                
as individual applications. 
MuPIF comes with abstract ​Workflow class, derived from ​Application class, supposed to be a              
parent class for any workflow represented as a class. It extends the ​Application interface by               
defining ​solve method, which implements a time loop over the individual time steps, solved by               
solveStep​ method defined already in ​Application​ interface. 
 
The default implementation of Workflow solve method is shown in a listing below. It generates a                
sequence of time steps satisfying the stability requirements till reaching the target time. If the               
default implementation does not fit, the method can be overloaded. 
 

class Workflow(Application.Application): 
def solve(self, runInBackground=False): 

     time = 0. 
     timeStepNumber = 0 
 
     while (abs(time-self.targetTime) > 1.e-6): 
         dt = self.getCriticalTimeStep() 
         time=time+dt 
         if (time > self.targetTime): 
                         time = targetTime 
         timeStepNumber = timeStepNumber+1 
         istep=TimeStep.TimeStep(time,dt, timeStepNumber) 
   
         self.solveStep(istep) 
         self.finishStep(istep) 
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         self.terminate() 

 
 
The subsequent code snippet illustrates the concept on coupled, steady-state          
thermo-mechanical workflow. The implementation should be extending by implementing the          
get/set methods to interact with other components. The working example of workflow defined as              
a class can be found in examples/Example18 directory of MuPIF installation (Available since             
MuPIF version 2.0) 
 

class Demo18(Workflow.Workflow): 
 def __init__ (self, targetTime=0.): 
     super(Demo18, self).__init__(file='', workdir='', targetTime=targetTime) 
               ​# initialize / connect to individual applications 
               locate nameserver 
     ns = PyroUtil.connectNameServer(nshost, nsport, hkey) 
               #connect to JobManager running on (remote) server and create a tunnel to it 
               self.thermalJobMan = PyroUtil.connectJobManager(ns, cfg.jobManName) 
               #allocate the thermal server 
               self.thermal = PyroUtil.allocateApplicationWithJobManager( ns,self.thermalJobMan, 
                                       jobNatport, PyroUtil.SSHContext(userName, sshClient)) 
               # connect to standalone mechanical server;  
               self.mechanical = PyroUtil.connectApp(ns, 'mechanical') 
  

def solveStep(self, istep, stageID=0, runInBackground=False): 
               self.thermal.solveStep(istep) 
     f = self.thermal.getField(FieldID.FID_Temperature, istep.getTime()) 
     self.mechanical.setField(f) 
     self.mechanical.solveStep(istep) 
     f = self.mechanical.getField(FieldID.FID_Displacement, istep.getTime()) 
     data = f.field2VTKData().tofile('M_%s'%str(istep.getNumber())) 
     self.thermal.finishStep(istep) 
     self.mechanical.finishStep(istep) 
 

def getCriticalTimeStep(self): 
     # determine critical time step 
     return min 
(self.thermal.getCriticalTimeStep(),self.mechanical.getCriticalTimeStep()) 
 

def terminate(self): 
      self.thermalAppRec.terminateAll() 
      self.mechanical.terminate() 
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      super(Demo18, self).terminate() 
 

def getApplicationSignature(self): 
     return "Demo18 workflow 1.0" 

 
 
 
 
 
 
 

8. Distributed Model 

Common feature of parallel and distributed environments is a distributed data structure and             
concurrent processing on distributed processing nodes. This brings in an additional level of             
complexity that needs to be addressed. To facilitate execution and development of the             
simulation workflows, the platform provides the transparent communication mechanism that will           
take care of the network communication between the objects. An important feature is the              
transparency, which hides the details of remote communication to the user and allows to work               
with  local and remote objects in the same way. 
 
The communication layer is built on ​Pyro library [4], which provides a transparent distributed              
object system fully integrated into Python. It takes care of the network communication between              
the objects when they are distributed over different machines on the network. One just calls a                
method on a remote object as if it were a local object – the use of remote objects is (almost)                    
transparent. This is achieved by the introduction of so-called proxies. A proxy is a special kind of                 
object that acts as if it were the actual object. Proxies forward the calls to the remote objects,                  
and pass the results back to the calling code. In this way, there is no difference between                 
simulation script for local or distributed case, except for the initialization, where, instead of              
creating local object, one has to connect to the remote object. 
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Fig. 7: Comparison of local vs. remote object communication scenarios 

 
To make an object remotely accessible, it has to be registered with the daemon, a special object                 
containing server side logic which dispatches incoming remote method calls to the appropriate             
objects. To enable runtime discovery of the registered objects, the name server is provided,              
offering a phone book for Pyro objects, allowing to search for objects based on logical name.                
The name server provides a mapping between logical name and exact location of the object in                
the network, so called uniform resource identifier (URI). The process of object registration and of               
communication with remote objects (compared to local objects) is illustrated in Fig. 7. 
 

8.1. Distributed aspects of the API  

One of the important aspect in distributed model is how the data are exchanged between               
applications running at different locations. The Pyro4 communication layer allows to exchange            
data in terms of get and set API methods in two ways. The communication layer automatically                
takes care of any object that is passed around through remote method calls. The receiving side                
of a call can receive either a local copy of the remote data or the representation of the remote                   
data (Proxy). 

● The communication in terms of exchanging local object copies can be less efficient than              
communication with remote objects directly, and should be used for objects with low             
memory footprint. One potential advantage is that the receiving side receives the copy of              
the data, so any modification of the local copy will not affect the source, remote data.                
Also multiple method invocation on local objects is much more efficient, compared to             
costly communication with a remote object. 

● On the other hand, the data exchange using proxies (references to remote data) does              
not involves the overhead of creating the object copies, which could be prohibitively             
large for complex data structures. Also, when references to the remote objects are             
passed around, the communication channel must be established between receiving side           
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and remote computer owning the actual object, while passing local objects requires only             
communication between caller and receiver. 

Both approaches have their pros and cons and their relative efficiency depends on actual              
problem, the size of underlying data structures, frequency of operations on remote data, etc.  
 
Pyro4 will automatically take care of any Pyro4 objects that you pass around through remote               
method calls. If the autoproxying is set to on (AUTOPROXY = True by default), Pyro4 will                
replace objects by a proxy automatically, so the receiving side can call methods on it and be                 
sure to talk to the remote object instead of to a local copy. There is no need to create a proxy                     
object manually, a user just has to register the new object with the appropriate daemon. This is                 
a very flexible mechanism, however, it does not allow explicit control on the type of passed                
objects (local versus remote). 
 
Typically, one wants to have explicit control whether objects are passed as proxies or local 
copies. The get methods (such as ​getProperty​, ​getField​) should not register the returned object 
at the Pyro4 daemon. When used, the remote receiving side obtains the local copy of the object. 
To obtain the remote proxy, one should use ​getFieldURI​ API method, which calls getField 
method, registers the object at the server daemon and returns its URI. The receiving side then 
can obtain a proxy object from URI. This is illustrated in the following code snippet: 
 

field_uri = Solver.getFieldURI(FieldID.FID_Temperature, 0.0) 
field_proxy = Pyro4.Proxy(uri) 

 

8.2. Requirements for distributed computing 

To enable the discovery of remote objects a nameserver service is required, allowing to keep               
track of individual objects in network. It is also allows to use readable uniform resource               
identifiers (URI) instead of the need to always know the exact object id and its location. 
 
The platform is designed to work on virtually any distributed platform, including grid and cloud               
infrastructure. For the purpose of performing simulations within a project, it is assumed that              
individual simulations and therefore the individual simulation packages will be distributed over            
the network, running on dedicated servers provided by individual partners, forming grid-like            
infrastructure.  
According to requirements specified in D1.2 Software Requirements Specification Document for           
Cloud Computing [2], different functional requirements have been defined, with different levels            
of priorities. Typical requirements include services for resource allocation, access and license            
control, etc. In the project, we decided to follow two different strategies, how to fulfill these                
defined requirements. The first one is based on developing custom solution for resource             
allocation combined with access control based on standardized SSH technology based on            
public key cryptography for both connection and authentication. It uses platform distributed            
object technology and this allows its full integration in the platform. This solution is intended to                
satisfy only the minimum requirements, but its setup and operation is easy. It setup does not                
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requires administrative rights and can be set up and run using user credentials. The second               
approach is based on established condor middleware. This solution provides more finer control             
over all aspects. On the other hand, its setup is more demanding. The vision is to allow the                  
combination of both approaches. Both approaches and their requirements are described in            
following sections.  
 

8.3. Internal platform solution - JobManager resource allocation 

 
This solution has been developed from a scratch targeting fulfilment of minimal requirements             
only while providing simple setup. The resource allocation is controlled by ​JobManager​. Each             
computational server within a platform should run an instance of JobManager, which provides             
services for allocation of application instances based on user request and monitoring services. 
 
The ​JobManager is implemented as python object like any other platform components and is              
part of platform source code. It is necessary to create an instance of ​JobManager on each                
application server and register it on the platform nameserver to make it accessible for clients               
running simulation scenarios. This allows to access ​JobManager services using the same Pyro             
technology, which makes the resource allocation to be part of the the simulation scenario.              
Typically, the simulation scenario script first establishes connection to the platform nameserver,            
which is used to query and create proxies of individual ​JobManagers​. The individual             
JobManagers are subsequently requested to create the individual application instances (using           
allocateJob service) and locally represented by corresponding proxy objects. Finally, the           
communication with remote application instances can be established using proxies created in            
the previous step, see Fig. 8 illustrating typical work flow in the distributed case. 
 
The job manager has only limited capability to control allocated resources. In the present              
implementation, the server administrator can impose the limit on number of allocated            
applications. The configuration of the jobmanager requires only simple editing of configuration            
file. The individual applications are spawned under new process to enable true concurrency of              
running processes and avoid limitations of Python related to concurrent thread processing.  
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Fig. 8: Typical control flow with resource allocation using JobManager. 

 
The status of individual job managers can be monitored with the jobManStatus.py script, located              
in tools subdirectory of the platform distribution. This script displays the status of individual jobs               
currently running, including their run time and user information. The information displayed is             
continuously refreshed, see Fig. 9. 
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Fig. 9: Screenshot of Job Manager monitoring tool 

 
 
The internal jobManager does not provide any user authentication service at the moment. The              
user access is assumed to be controlled externally, using ssh authorization. For example, to              
establish the authorized connection to a remote server and platform services (jobManager)            
using a ssh tunnel, a valid user credentials for the server are required. The secured,               
authenticated connection is realized using setting up ssh tunnel establishing a secure and             
trusted connection to a server. The ssh connections can be authorized by traditional             
user/passwords or by accepting public ssh keys generated by individual clients and send to              
server administrators. More details are given in a Section on SSH tunneling. 
 
The status of individual computational servers can be monitored online using the provided             
monitoring tool. A simple ping test can be executed, verifying the connection to the particular               
server and/or allocated application instance. 
 

8.3.1. Setting up a Job Manager 

The skeleton for application server is distributed with the platform and is located in              
examples/Example06-JobMan​. The following files are provided: 
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● server.py: The implementation of application server. It starts JobManager instance and           
corresponding daemon. Most likely, no changes are required. 

● serverConfig.py: configuration file for the server. The individual entries have to be            
customized for particular server. Follow the comments in the configuration file. In the             
example, the server is configured to run on Unix-based system. 

● JobMan2cmd.py: python script that is started in a new process to start the application              
instance and corresponding daemon. Its behaviour can be customized by Config.py. 

● test.py: Python script to verify the jobManager functionality. 
● clientConfig.py: configuration file for client code (simulation scenarios). The client can           

run on both Unix / Windows systems, configuring correctly ssh client.  

The setup requires to install the platform, as described in ​3. Platform installation​. Also, the 
functional application API class is needed. Fig. 10 shows the flowchart with a JobManager using 
ssh tunnels. 

 

Fig. 10: ​Example06-JobMan​ displaying ports and tunnels in a distributed setup using ssh 
tunnels. 

The recommended procedure to set up job manager for your server is to create a separate                
directory, where you will copy the server.py and serverConfig.py files from           
examples/Example06-JobMan​ directory and customize settings in serverConfig.py. 
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Simpler situation exists for VPN network setup where no ssh tunnels needs to be allocated and                
all communication runs on a local-like network. 

 

Fig. 11: ​Example16​ thermo-mechanical analysis displaying ports and tunnels in a distributed 
setup using VPN. 

8.3.2. Configuration 

The configuration of the job manager consists of editing the configuration file (serverConfig.py).  
The following variables can be used to customize the server settings: 
 

Variable Description 

deamonHost 
 
 

hostname or IP address  of the application 
server, i.e. 
daemonHost='147.32.130.137' 

hostUserName user name to establish ssh connection to 
server, i.e. hostUserName='mmp' 

jobManPort Server port where job manager daemon 
listens, i.e., jobManPort=44361. 
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jobManNatport Port reported by nameserver used to 
establish tunnel to destination JobManager 
port (jobManPort), i.e. jobManNatport=5555 

jobManName 
 

Name used to register jobManager at 
nameserver, i.e, 
jobManName='Mupif.JobManager@micress' 

jobManPortsForJobs List of dedicated ports to be assigned to 
application processes (recommended to 
provide more ports than maximum number of 
application instances, as the ports are not 
relesead immediately by operating system, 
see jobManMaxJobs) 
Example:  
jobManPortsForJobs=( 9091, 9092, 9093, 
9094) 

jobManMaxJobs Maximum number of jobs that can be running 
at the same time.  
jobManMaxJobs=4 

jobManWorkDir Path to JobManager working directory. In this 
directory, the subdirectories for individual jobs 
will be created and these will become working 
directories for individual applications. Users 
can upload/download files into these job 
working directories. Note: the user running 
job manager should have corresponding I/O 
(read/write/create) permissions. 

applicationClass Class name of the application API class. The 
instance of this class will be created when 
new application instance is allocated by job 
manager. The corresponding python file with 
application API definition need to be 
imported. 

 
The individual ports can be selected by the server administrator, the ports from range              
1024-49152 can be used by users / see IANA (Internet Assigned Numbers Authority). 

To start application server run:  

$ python server.py 

The command logs on screen and also in the server.log logfile the individual requests.  
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The status of the application server can be monitored on-line from any computer (provided you               
have established ssh connection to server) using tools/jobManStatus.py monitor. To start           
monitoring, run the following command:  

$ python jobManStatus.py -j Mupif.JobManager@demo -h 147.32.130.137 -u mmp -p 44361 -n 
147.32.130.137 -r 9090 -k mmp-secret-key -t 

The -j option specifies the jobmanager name (as registered in pyro nameserver), -h determines              
the hostname where jobmanager runs, -p determines the port where jobmanager is listening, -n              
is hostname of the nameserver, -r is the nameserver port, -k allows to set PYRO hkey, -t                 
enforces the ssh tunnelling, and -u determines the username to use to establish ssh connection               
on the server, see Fig. 12. 
 
There is also a simple test script (tools/jobManTest.py), that can be used to verify that the                
installation procedure was successful. It contact the application server and asks for new             
application instance. 

 
Fig. 12: Testing job manager in a simple setup 

 
 

8.4. Securing the communication using SSH tunnels 

8.4.1. Setting up ssh server 

SSH server provides functionalities which generally allows to 
● Securely transfer encrypted data / streams 
● Securely transfer encrypted files (SFTP) 
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● Set up port forwarding via open ports, so called tunneling, allowing to get access to               
dedicated ports through a firewall in between  

● Remote command execution 
● Forwarding or tunneling a port 
● Securely mounting a directory on a remote server (SSHFS) 

Ssh server is the most common on Unix systems, ​freeSSHd server can be used on Windows                
free of charge. The server usually requires root privileges for running. Ssh TCP/UDP protocol              
uses port 22 and uses encrypted communication by default. 
Connection to a ssh server can be carried out by two ways. A user can authenticate by typing                  
username and password. However, MuPIF prefers authentication using asymmetric         
private-public key pairs since the connection can be established without user’s interaction and             
password typing every time. Fig. 13 shows both cases. 

 
Fig. 13: Connection to a ssh server using username/password and private/public keys 

 
Private and public keys can be generated using commands ​ssh-keygen for Unix and             
puttygen.exe for Windows. Ssh2-RSA is the preferred key type, no password should be set up               
since it would require user interaction. Keys should be stored in ssh2 format (they can be                
converted from existing openSSH format using ​ssh-keygen or ​puttygen.exe​). Two files are            
created for private and public keys; Unix ​id_rsa and ​id_rsa.pub files and Windows ​id_rsa.ppk              
and ​id_rsa​ files. Private key is a secret key which remains on a client only. 
 
Authentication with the keys requires appending a public key to the ssh server. On Unix ssh                
server, the public key is appended to e.g. ​mech.fsv.cvut.cz:/home/user/.ssh/ authorized_keys​.          
The user from a Unix machine can log in without any password using a ssh client through the                  
command 

ssh user@mech.fsv.cvut.cz -i ~/project/keys/id_rsa 

 
Ssh protocol allow setting up port forwarding via port 22, so called tunneling. Such scenario is 
sketched in Fig. 14, getting through a firewall in between. Since the communication in 
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distributed computers uses always some computer ports, data can be easily and securely 
transmitted over the tunnel.  

 
Fig. 14: Creating a ssh forward tunnel 

8.4.2. Example of distributed scenario with ssh tunneling 

The process of allocating a new instance of remote application is illustrated on adapted version               
of the local thermo-mechanical scenario, already presented in ​7. Developing user workflows​.            
First, the configuration file is created containing all the relevant connection information, see             
Listing 3.  
 

#Network setup configuration 
import sys, os, os.path 
import Pyro4 
# Pyro config 
Pyro4.config.SERIALIZER="pickle" 
Pyro4.config.PICKLE_PROTOCOL_VERSION=2 #to work with python 2.x and 3.x 
Pyro4.config.SERIALIZERS_ACCEPTED={'pickle'} 
Pyro4.config.SERVERTYPE="multiplex" 
 
#Absolute path to mupif directory - used in JobMan2cmd 
mupif_dir = os.path.abspath(os.path.join(os.getcwd(), "../../..")) 
sys.path.append(mupif_dir) 
 
import logging 
 
#NAME SERVER 
nshost = '147.32.130.71' #IP/name of a name server 
nsport = 9090 #Port of name server 
hkey = 'mmp-secret-key' #Password for accessing nameServer and applications 
 
#Remote server settings 
server = '147.32.130.71' #IP/name of a server's daemon 
serverPort = 44382 #Port of server's daemon 
serverNathost = '127.0.0.1' #Nat IP/name (necessary for ssh tunnel) 
serverNatport = 5555 #Nat port (necessary for ssh tunnel) 
 
jobManName='Mupif.JobManager@Example' #Name of job manager 
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appName = 'MuPIFServer' #Name of application 
 
#JobManager setup 
portsForJobs=( 9095, 9200 ) #Range of ports to be assigned on the server to jobs 
jobNatPorts = list(range(6000, 6050)) #NAT client ports used to establish ssh 
connections 
maxJobs=4 #Maximum number of jobs 
#Auxiliary port used to communicate with application daemons on a local computer 
socketApps=10000 jobManWorkDir='.' #Main directory for transmitting files 
 
jobMan2CmdPath = "../../tools/JobMan2cmd.py" #Path to JobMan2cmd.py 
 
#CLIENT 
erverUserName = os.getenv('USER') 
 
#ssh client params to establish ssh tunnels 
if(sys.platform.lower().startswith('win')):#Windows ssh client 

sshClient = 'C:\\Program Files\\Putty\\putty.exe' 
options = '-i L:\\.ssh\\mech\id_rsa.ppk' 
sshHost = '' 

else:#Unix ssh client 
sshClient = 'ssh' 
options = '-oStrictHostKeyChecking=no' 
sshHost = '' 

Listing 3: Simple example illustrating simulation scenario 
 
The adapted simulation scenario is presented in Listing 4. This example assumes that the              
nameserver and thermal solver run on remote server, while the mechanical solver is executed              
locally on the same computer as simulation scenario. First, the simulation scenario connects to              
the nameserver and subsequently the handle to thermal solver allocated by the corresponding             
job manager is created using ​PyroUtil.allocateApplicationWithJobManager service. ​This service         
first obtains the remote handle of the job manager for thermal application, requests allocation of               
a new instance of thermal solver, returning an instance of RemoteAppRecord class, which             
encapsulate all the details of opened connections, established ssh tunnels, etc. It provides two              
useful methods: ​getApplication() ​returning application Proxy and ​terminate() that can be used to             
correctly terminate the application and close all connections. 
 
The listing shows the complete distributed scenario, with the required modifications highlighted            
by the blue color. Note that the differences are only in the setup and terminating part, the core                  
logic of the scenario remains the same for local as well as distributed case. 
This example is available in MuPIF distribution under        
examples/Example15-thermoMechanicalNonStat-ssh-JobMan​ directory. 
 
 

import sys 
sys.path.extend(['..', '../../..']) 
from mupif import * 

44/54 



import mupif 
import conf as cfg 
 
import time as timeTime 
start = timeTime.time() 
mupif.log.info('Timer started') 
 
#locate nameserver 
ns = PyroUtil.connectNameServer(nshost=cfg.nshost, nsport=cfg.nsport, 
hkey=cfg.hkey) 
#localize JobManager running on (remote) server and create a tunnel to it 
#allocate the thermal server 
solverJobManRec = (cfg.serverPort, cfg.serverNatport, cfg.server, 
cfg.serverUserName, cfg.jobManName) 
 
 
jobNatport = cfg.jobNatPorts.pop(0) 
 
try: 

appRec = PyroUtil.allocateApplicationWithJobManager( ns, solverJobManRec, 
jobNatport, cfg.sshClient, cfg.options, cfg.sshHost ) 

thermal = appRec.getApplication() 
except Exception as e: 

mupif.log.exception(e) 
else: 

if thermal is not None: 
 appsig=thermal.getApplicationSignature() 
 mupif.log.info("Working thermalServer " + appsig) 
 mechanical = PyroUtil.connectApp(ns, 'mechanical') 
 
 time  = 0. 
 dt = 0. 
 timestepnumber = 0 
 targetTime = 10.0 
 
 while (abs(time - targetTime) > 1.e-6): 
 
 mupif.log.debug("Step: %g %g %g"%(timestepnumber,time,dt)) 
 # create a time step 
 istep = TimeStep.TimeStep(time, dt, timestepnumber) 
 
 try: 
 thermal.solveStep(istep) 
 f = thermal.getField(FieldID.FID_Temperature, istep.getTime()) 
 data = f.field2VTKData().tofile('T_%s'%str(timestepnumber)) 
 
 mechanical.setField(f) 
 sol = mechanical.solveStep(istep) 
 f = mechanical.getField(FieldID.FID_Displacement, istep.getTime()) 
 data = f.field2VTKData().tofile('M_%s'%str(timestepnumber)) 
 
 thermal.finishStep(istep) 
 mechanical.finishStep(istep) 
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 # determine critical time step 
 dt = min (thermal.getCriticalTimeStep(), 
                       mechanical.getCriticalTimeStep()) 
 
 # update time 
 time = time+dt 
 if (time > targetTime): 
 # make sure we reach targetTime at the end 
 time = targetTime 
 timestepnumber = timestepnumber+1 
 
 except APIError.APIError as e: 
 log.error("Following API error occurred:",e) 
 break 
 mechanical.terminate();   
 

else: 
 mupif.log.debug("Connection to thermal server failed, exiting") 
 
finally: 

if appRec: appRec.terminateAll() 

Listing 4: Simple example illustrating simulation scenario 
 

8.4.3. Advanced SSH setting 

When a secure communication over ssh is used, then typically a steering computer (a computer               
executing top level simulation script/workflow) creates connections to individual application          
servers. However, when objects are passed as proxies, there is no direct communication link              
established between individual servers. ​This is quite common situation, as it is primarily the              
steering computer and its user, who has necessary ssh-keys or credentials to establish             
the ssh tunnels from its side, but typically is not allowed to establish a direct ssh link                 
between application servers. The solution is to establish such a communication channel            
transparently via a steering computer, using forward and reverse ssh tunnels. The platform             
provides handy methods to establish needed communication patterns (see         
PyroUtil.connectApplications​ method and refer to ​example10​ for an example). 
 
As an example, consider the simulation scenario composed of two applications running on two              
remote computers as depicted in Fig. 15. The Pyro4 daemon on server 1 listens on               
communication port 3300, but the nameserver reports the remote objects registered there as             
listening on local ports 5555 (so called NAT port). This mapping is established by ssh tunnel                
between client and the server1. Now consider a case, when application2 receives a proxy of               
object located on server1. To operate on that object the communication between server 1 and               
server 2 needs to be established, again mapping the local port 5555 to target port 3300 on                 
server1. Assuming that steering computer already has an established communication link from            
itself to Application1 (realized by ssh tunnel from local NAT port 5555 to target port 3300 on the                  
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server1), an additional communication channel from server2 to steering computer has to be             
established (by ssh tunnel connecting ports 5555 on both sides). In this way, the application2               
can directly work with remote objects at server 1 (listening on true port 3300) using proxies with                 
NAT port 5555. 

 

 
Fig. 15: Establishing a communication link between two application servers via SSH tunnels. 

 
8.4.4. Troubleshooting SSH setup 

● Verify that the connection to nameserver host works: 
○ ping name_server_hostname 

● Run the jobManTest.py with additional option “-d” to turn on debugging output, examine             
the output (logged also in mupif.log file) 

● Examine the output of server messages printed on screen and/or in file ​server.log  
 

8.5. Using Virtual Private Network (VPN)  

8.5.1. Generalities 

This section only provides background for VPN and can be skipped. The standard way of node                
communication in MuPIF is to use SSH tunnels. SSH tunnels have the following advantages: 

● No need for administrator privileges. 
● Often the way for remotely accessing computers which are already in use. 
● Easy traversal of network firewalls (as long as the standard port 22 is open/tunneled to               

the destination). 
They also have some disadvantages: 

● Non-persistence: the tunnel has to be set up every time again; if connection is              
interrupted, explicit reconnection is needed, unless automatic restart happens, e.g.          
autossh​. 

The tunnel is only bi-directional and does no routing; thus is A-B is connected and B-C is 
connected, it does not imply C is reachable from A. Though, it is possible to create a multi-hop 
tunnel by chaining ​ssh​ commands. 
VPN is an alternative to SSH tunnels, providing the encryption and authorization services. The              
VPNs work on a lower level of communication (OSI Layer 2/3) by establishing “virtual” (existing               
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on the top of other networks) network, where all nodes have the illusion of direct communication                
with other nodes through TCP or UDP, which have IP addresses assigned in the virtual network                
space, see Fig. 16. The VPN itself communicates through existing underlying networks, but this              
aspect is not visible to the nodes; it includes data encryption, compression, routing, but also               
authentication of clients which may connect to the VPN. ​OpenVPN is a major implementation of               
VPN, and is supported on many platforms, including Linux, Windows, Android and others. 
 
Using VPN with MuPIF is a trade-off where the infrastructure (certificates, VPN server, …) is               
more difficult to set up, but clients can communicate in a secure manner without any additional                
provisions - it is thus safe to pass unencrypted data over the VPN, as authentication has been                 
done already; in particular, there is no need for SSH tunnels 
 
Note that all traffic exchanged between VPN clients will go through the OpenVPN server              
instance; the connection of this computer should be fast enough to accommodate all             
communication between clients combined. 
 

 

Fig. 16: VPN architecture 

 

8.5.2. Setup 

Setting up the VPN is generally more difficult than ssh tunnels. It comprises the following: 
● Communication ports reachable by all clients must be set up as a part of the               

infrastructure (usually on a static & public IP address); this involves opening ports in              
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firewalls, and most network administrators are not very keen to do that. While these are               
configurable, the default is UDP 1194 for client access; often TCP 443 is also (ab)used               
(it is commonly and by standard used for HTTPS). 

● Running the OpenVPN daemon on the server; server configuration is not overly            
complicated, there are in fact many good tutorials available. 

● Distributing OpenVPN configuration files (usually ending .ovpn) to the clients. 
● Clients have to connect to the VPN whenever they want to communicate with the              

network - this can be done from the command-line or using graphical interfaces. 
Whenever a client connects to the OpenVPN server, the following happens: 

1. The client is authenticated, either via username/password or certificate. 
2. The client is handed an IP address from the VPN range, as specified by ifconfig-pool               

configuration option, or assigned a fixed IP based on the client configuration            
(client-config-dir), see ​OpenVPN Addressing​. 

3. The client’s OS assigns the IP address to a virtual network adapter (tun0, tun1 etc in                
Linux) and sets IP routing accordingly. Depending on server configuration, all non-local            
traffic (such as to public internet hosts) may be routed through the VPN, or only traffic for                 
VPN will go through the VPN. At this moment, other clients of the VPN become visible to                 
the new client, and vice versa (it is client’s responsibility to firewall the VPN interface, if                
desired). 

 
There are example scripts to generate OpenVPN configuration for MuPIF in ​tools/vpn​. The 
script generates certificate authority and keys used for authentication of server and clients, and 
also for traffic encryption; those files must be slightly hand-adjusted for real use afterwards. The 
recommended configuration for MuPIF is the following (non-exhaustive; the tutorial from 
digitalocean (​www.digitalocean.com/…..​) explains most of the procedure). 

1. Use the usual “subnet” network topology. 
2. IP addresses within the VPN may be assigned from the address pool, but at least some 

machines should have fixed IP - this can be done using the client-config-dir option. In 
particular, the Pyro nameserver should have a well-known and stable IP address so that 
the client configuration does not have to change; the best is to run the OpenVPN server 
on the same computer where Pyro runs, then the IP address will be stable. 

3. Only in-VPN traffic should be routed through the VPN (thus the redirect-gateway option 
should not be used); communication of clients with Internet will go through the usual ISP 
route of each client. 

4. Firewall facing internet should allow UDP traffic on port 1194. Optionally, other port can 
be used (even non-OpenVPN port, like TCP/443, which is normally used for HTTPS). All 
traffic on the tun0 (or other number) interfaces should be allowed; one can use the “-i 
tun+” option of iptables to apply a rule to any interface of which name starts with tun. 

5. Keepalive option can be used to increase network reliability (functions as both heart-beat 
& keep-alive). 

6. Authentication can be done using username & password, but key-based authentication 
(client keys must be distributed to clients) is recommended. 
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7. The server is started either as a daemon (through init.d or systemd) or from the 
commandline, in which case “Initialization Sequence Completed” will be shown when 
ready to serve clients. 

Client configuration: 
1. If the configuration is distributed as .ovpn file with embedded keys, the VPN can be 

activated from command-line by issuing sudo openvpn --config client.ovpn. The client 
will say Initialization Sequence Completed after successful connection to the VPN. Use 
Ctrl-C to terminate the client and disconnect from the VPN. 

2. The GUI of NetworkManager can import the configuration and use it, but not in all cases 
(embedded keys seem to be the problem), in which case the .ovpn file can only contain 
filenames where the keys/certs are stored, or the configuration can be created by hand 
through the NetworkManager GUI. 

3. Connection to the VPN can be verified by issuing “ip addr show” which should show the 
tun0 (or similar) interface with an IP assigned from the OpenVPN server pool. 

 

8.5.3. Example of simulation scenario using VPN 

The process of allocating a new instance of remote application is illustrated on adapted version               
of the local thermo-mechanical scenario, already presented in ​7. Developing user workflows​.            
First, the configuration file is created containing all the relevant connection information, see             
Listing 5. 
 

#Common configuration for examples 
import sys, os, os.path 
import Pyro4 
Pyro4.config.SERIALIZER="pickle" 
Pyro4.config.PICKLE_PROTOCOL_VERSION=2 #to work with python 2.x and 3.x 
Pyro4.config.SERIALIZERS_ACCEPTED={'pickle'} 
Pyro4.config.SERVERTYPE="multiplex" 
 
#Absolute path to mupif directory - used in JobMan2cmd 
mupif_dir = os.path.abspath(os.path.join(os.getcwd(), "../../..")) 
sys.path.append(mupif_dir) 
 
#from mupif import logging 
 
#NAME SERVER and SERVER 
nshost = '172.30.0.1'#IP/name of a name server 
nsport = 9090 #Port of name server 
hkey = 'mmp-secret-key'#Password for accessing nameServer and applications 
 
#SERVER for a single job or for JobManager 
server = '172.30.0.1' #IP/name of a server's daemon 
serverPort = 44382 #Port of server's daemon 
jobManName='Mupif.JobManager@Example'#Name of job manager 
appName = 'MuPIFServer'#Name of application 
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#Jobs in JobManager 
portsForJobs=( 9095, 9200 )#Range of ports to be assigned on the server to jobs 
maxJobs=4 #Maximum number of jobs 
#Auxiliary port used to communicate with application daemons on a local computer 
socketApps=10000 
jobManWorkDir='.' #Main directory for transmitting files 
jobMan2CmdPath = "../../tools/JobMan2cmd.py" #Path to JobMan2cmd.py 
 
#Name of the application 
appName = 'MuPIFServer' 
 

Listing 5: Simple example illustrating simulation scenario 
 
The adapted simulation scenario is presented in Listing 6. This example assumes that the              
nameserver and individual application servers (job managers) run on different computers. The            
main difference now is that there is no need to create any ssh tunnels so there is also no need                    
to set ssh related parameters in config file. The listing shows the complete distributed scenario,               
with the required modifications highlighted by the blue color. This example is available in MuPIF               
distribution under  
examples/Example16-thermoMechanicalNonStat-VPN-JobMan​ directory. 

import sys 
sys.path.extend(['..', '../../..']) 
from mupif import * 
import mupif 
import conf_vpn as cfg 
 
import time as timeTime 
start = timeTime.time() 
mupif.log.info('Timer started') 
 
#locate nameserver 
ns = PyroUtil.connectNameServer(nshost=cfg.nshost, nsport=cfg.nsport, 
hkey=cfg.hkey) 
#localize JobManager running on (remote) server and create a tunnel to it 
#allocate the thermal server 
solverJobManRecNoSSH = (cfg.serverPort, cfg.serverPort, cfg.server, '', 
cfg.jobManName) 
 
jobNatport = -1 
 
try: 

appRec = PyroUtil.allocateApplicationWithJobManager( ns, 
solverJobManRecNoSSH, jobNatport, sshClient='manual', options='', sshHost = '' ) 

mupif.log.info("Applocated application %s" % appRec) 
thermal = appRec.getApplication() 

except Exception as e: 
mupif.log.exception(e) 

else: 
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if thermal is not None: 
 appsig=thermal.getApplicationSignature() 
 mupif.log.info("Working thermalServer " + appsig) 
 mechanical = PyroUtil.connectApp(ns, 'mechanical') 
 
 time  = 0. 
 dt = 0. 
 timestepnumber = 0 
 targetTime = 10.0 
 
 while (abs(time - targetTime) > 1.e-6): 
 
 mupif.log.debug("Step: %g %g %g"%(timestepnumber,time,dt)) 
 # create a time step 
 istep = TimeStep.TimeStep(time, dt, timestepnumber) 
 
 try: 
 thermal.solveStep(istep) 
 f = thermal.getField(FieldID.FID_Temperature, istep.getTime()) 
 data = f.field2VTKData().tofile('T_%s'%str(timestepnumber)) 
 
 mechanical.setField(f) 
 sol = mechanical.solveStep(istep) 
 f = mechanical.getField(FieldID.FID_Displacement, istep.getTime()) 
 data = f.field2VTKData().tofile('M_%s'%str(timestepnumber)) 
 
 thermal.finishStep(istep) 
 mechanical.finishStep(istep) 
 
 # determine critical time step 
 dt = min (thermal.getCriticalTimeStep(), 
mechanical.getCriticalTimeStep()) 
 
 # update time 
 time = time+dt 
 if (time > targetTime): 
 # make sure we reach targetTime at the end 
 time = targetTime 
 timestepnumber = timestepnumber+1 
 
 except APIError.APIError as e: 
 log.error("Following API error occurred:",e) 
 break 
 mechanical.terminate();   
 

else: 
 mupif.log.debug("Connection to thermal server failed, exiting") 
 
finally: 

if appRec: appRec.terminateAll() 

Listing 6: Simple example illustrating simulation scenario 
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ChangeLog 

 
● V1.1 (05/2017): ​Expanded section on workflow implementation, added subsections on 

workflow templates and workflow as a class. Already describes some concept to be 
introduced in ver. 2.0 (transparent ssh tunnel handling using decorator classes). Added 
acknowledgement to EU via Composelector project. 
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ToDo 
● Description of metadata support missing 
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