

MuPIF.org Platform User Manual

Authors: B. Patzák​1​ and V. Šmilauer 1

Version 1.1.2 - 8/2017

1 Czech Technical University, Faculty of Civil Engineering, Department of Mechanics, Thákurova 7,
16629, Prague, Czech Republic.

1/54

1. Table of Content

1. Table of Content

2. Introduction

3. Platform installation
3.1. Prerequisites

3.1.1. Windows platforms
3.1.2. Linux / Unix (*nix) platforms
3.1.3. General requirements
3.1.4. Other recommended packages/softwares

3.2. Installing the MuPIF platform
3.3. Verifying platform installation

3.3.1. Running unit tests
3.3.2. Running examples

4. Platform operations

5. Platform APIs
5.1. Application class
5.2. Property class
5.3. Field class
5.4. Function class
5.5. TimeStep class
5.6. Mesh class
5.7. Cell class
5.8. Vertex class
5.9. BoundingBox
5.10. APIError

6. Developing Application Program Interface (API)

7. Developing user workflows
7.2 Workflow templates
7.3 Workflow example
7.4 Workflow as a class

8. Distributed Model
8.1. Distributed aspects of the API
8.2. Requirements for distributed computing
8.3. Internal platform solution - JobManager resource allocation

2/54

8.3.1. Setting up a Job Manager
8.3.2. Configuration

8.4. Securing the communication using SSH tunnels
8.4.1. Setting up ssh server
8.4.2. Example of distributed scenario with ssh tunneling
8.4.3. Advanced SSH setting

8.5. Using Virtual Private Network (VPN)
8.5.1. Generalities
8.5.2. Setup
8.5.3. Example of simulation scenario using VPN

9. Acknowledgements

10. References

ChangeLog

3/54

2. Introduction

MuPIF (​www.mupif.org​) is an integration framework, that facilitates the implementation of
multi-physic and multi-level simulation workflows, built from independently developed
components. MuPIF is open source, distributed under LGPL license.

The approach followed in the MuPIF is based on an system of distributed, interacting objects
designed to solve given problem. The individual objects represent entities in the problem
domain, including individual simulation packages, but also the data, such as fields and
properties. The abstract classes are introduced for all entities in the model space [1]. They
define a common interface, called API, that needs to be implemented by any derived class,
representing particular implementation of specific component. Such interface concept allows
using any derived class on a very abstract level, using common services defined by abstract
class, without being concerned with the implementation details of an individual software
component. The APIs have been developed not only for individual models, but also for
simulation data, like spatial fields, properties, etc.

The complex simulation pipeline developed in MuPIF-platform consists of top-level script in
Python language [3] (called scenario) enriched by newly introduced classes. Later in the project,
the top level script will be generated using a graphical tool. In principle, any control script can be
recasted into a class implementing Application class interface, so that it could itself represent an
application in MuPIF platform. Such an approach would allow building a hierarchy of nested
applications. The application steering and data exchange will be realized in a standard way by
calling individual services (methods). In case of distributed environments, a transparent
communication layer is provided, as described in the subsection on Distributed environments.
The software design of the platform has been described in [5,6,7].

Even though the platform can be used locally on a single computer orchestrating installed
applications, the real strength of the MuPIF platform is its distributed design, allowing to execute
simulation scenarios involving remote applications. The concept of so called proxy object that
represent remote objects allows to hide all the details of remote data exchange and execution to
the user. In turn, only minimal change of local simulation scenarios is required when distributed
resources are included. The distributed model is described in Section ​Distributed Model​.

3. Platform installation

3.1. Prerequisites

3.1.1. Windows platforms

● We suggest to install Anaconda scientific python package, which includes Python ≥3.4,
https://store.continuum.io/cshop/anaconda/

● Ssh client: putty.exe is recommended,​ ​http://www.putty.org/
● Optionally ssh key generator: puttygen.exe is recommended,​ ​http://www.putty.org/

4/54

http://www.putty.org/
http://www.putty.org/
http://www.putty.org/
https://store.continuum.io/cshop/anaconda/
http://www.mupif.org/
https://store.continuum.io/cshop/anaconda/
http://www.putty.org/

● Optionally ssh server if you need to accept SSH incoming connections and allowing
others to be on your system. FreeSSHd server is recommended,
http://www.freesshd.com/

3.1.2. Linux / Unix (*nix) platforms

● The Python (Python ≥3.4) installation is required.
● You can download the python installation package from

https://www.python.org/downloads/​. Just pick up the latest version in the 3.x series
(tested version 3.5.2).

● We recommend to install ​pip​ - a tool for installing and managing Python packages. If not
already installed as a part of your python distribution, the installation instructions can be
found​ ​here​.

● Ssh client (normally included in standard distributions)
● Optionally ssh server (required for application server installation)
● VPN server or VPN client if VPN connection is preferred, e.g.

https://openvpn.net/index.php/open-source/downloads.html

3.1.3. General requirements

● MuPIF platform depends/requires, besides others, Pyro4 and numpy modules. They can
be installed separately for a particular system or using ​pip​. If you install the whole MuPIF
package, it takes care automatically for all dependencies. However, using ​git​ repository
requires those Python modules to installed separately. For example, to install Pyro4
version 4.54:

pip install Pyro4==4.54

● MuPIF platform requires pyvtk (tested 0.4.85) python module. To install this module
using ​pip​:

pip install pyvtk

● MuPIF requires enum34 module, which can be installed also using ​pip​:

pip install enum34

3.1.4. Other recommended packages/softwares

● Paraview (tested 4.2.0), visualization application for vtu data files,
http://www.paraview.org/

● Windows: Notepad++ (tested 6.6.9),​ ​http://notepad-plus-plus.org/
● Windows: conEmu, windows terminal emulator,

https://code.google.com/p/conemu-maximus5/

3.2. Installing the MuPIF platform

The recommended procedure is to install platform as a python module using ​pip​:

pip install mupif

5/54

http://www.paraview.org/
http://pip.readthedocs.org/en/latest/installing.html
http://notepad-plus-plus.org/
http://www.freesshd.com/
http://pip.readthedocs.org/en/latest/installing.html
http://notepad-plus-plus.org/
https://code.google.com/p/conemu-maximus5/
http://www.freesshd.com/
http://www.paraview.org/
https://www.python.org/downloads/
https://code.google.com/p/conemu-maximus5/
https://www.python.org/downloads/
https://openvpn.net/index.php/open-source/downloads.html

This type of installation automatically satisfies all the dependencies.

Alternatively, the development version of the platform can be installed from ​git​ repository:

● We recommend to install git, a open source revision control tool. You can install git using
your package management tool or download installation package directly from​ ​git
website​.

● Once you have git installed, just clone the MuPIF platform repository into a directory
"mupif-code":

git clone https://github.com/mupif/mupif.git mupif

3.3. Verifying platform installation

3.3.1. Running unit tests

MuPIF platform comes with unit tests. To run unit tests we recommend to install ​nose python
module, which facilitates automatic discovery and execution of individual tests. To install node
module using pip:

pip install nose

This will install the nose libraries, as well as the​ ​nosetests​ script, which can be used to execute
the unit tests. From top level MuPIF installation directory enter:

cd tests
nosetests -v

You should see output something like this:

test_containsPoint (mupif.tests.test_BBox.BBox_TestCase) ... ok
test_intersects (mupif.tests.test_BBox.BBox_TestCase) ... ok
test_merge (mupif.tests.test_BBox.BBox_TestCase) ... ok
test_containsPoint (mupif.tests.test_Cell.Triangle_2d_lin_TestCase) ... ok
test_geometryType (mupif.tests.test_Cell.Triangle_2d_lin_TestCase) ... ok
test_glob2loc (mupif.tests.test_Cell.Triangle_2d_lin_TestCase) ... ok
test_interpolate (mupif.tests.test_Cell.Triangle_2d_lin_TestCase) ... ok
…..
testOctreeNotPickled (mupif.tests.test_saveload.TestSaveLoad) ... ok
--
Ran 82 tests in 2.166s

OK

6/54

http://git-scm.com/downloads
http://git-scm.com/downloads
http://git-scm.com/downloads
http://nose.readthedocs.io/en/latest/usage.html
http://nose.readthedocs.io/en/latest/usage.html

Indicating that ​nose​ found and ran listed tests successfully.

3.3.2. Running examples

In addition, the platform installation comes with many examples, that can be used to verify the
successful installation as well, but they also serve as an educational examples illustrating how
to use the platform. The examples are located in examples subfolder. For example, to run
Example01:

cd examples/Example01
python Example01.py

4. Platform operations

The complex simulation pipeline developed in MuPIF-platform consists of top-level script in
Python language (called scenario) enriched by newly introduced classes. These classes
represent fundamental entities in the model space (such as simulation tools, properties, fields,
solution steps, interpolation cells, units, etc). The top level classes are defined for these entities,
defining a common interface allowing to manipulate individual representations using a single
common interface. The top level classes and their interface is described in platform Interface
Specification document [1].

In this document, we present a simple, minimum working example, illustrating the basic concept.
The example presented in this section is assumed to be executed locally. How to extend these
examples into distributed version is discussed in the section ​8. Distributed Model​.

The presented example in Listing 1 illustrates an example of so called weak-coupling, where for
each solution step, the first application (Application1) evaluates the value of concentration that
is passed to the second application (Application2) which, based on provided concentration
values (PropertyID.PID_Concentration), evaluates the average cumulative concentration
(PropertyID.PID_CumulativeConcentration). This is repeated for each solution step. The
example also illustrates, how solution steps can be generated in order to satisfy time step
stability requirements of individual applications.

from mupif import *
import application1
import application2

time = 0
timestepnumber=0
targetTime = 1.0

app1 = application1.application1(None) # create an instance of application #1
app2 = application2.application2(None) # create an instance of application #2

7/54

loop over time steps
while (abs(time -targetTime) > 1.e-6):

#determine critical time step
dt2 = app2.getCriticalTimeStep()
dt = min(app1.getCriticalTimeStep(), dt2)
#update time
time = time+dt
if (time > targetTime):
 #make sure we reach targetTime at the end
 time = targetTime
timestepnumber = timestepnumber+1

create a time step
istep = TimeStep.TimeStep(time, dt, timestepnumber)

try:
 #solve problem 1
 app1.solveStep(istep)
 #request temperature field from app1
 c = app1.getProperty(PropertyID.PID_Concentration, istep)
 # register temperature field in app2
 app2.setProperty (c)
 # solve second sub-problem
 app2.solveStep(istep)

prop = app2.getProperty(PropertyID.PID_CumulativeConcentration, istep)
print ("Time: %5.2f concentraion %5.2f, running average %5.2f" %

(istep.getTime(), c.getValue(), prop.getValue()))

 except APIError.APIError as e:
 logger.error("Following API error occurred: %s" % e)
 break

terminate
app1.terminate();
app2.terminate();

Listing 1: Simple example illustrating simulation scenario

The full listing of this example can be found in ​examples/Example01​. The output is illustrated in
Fig. 1.

8/54

http://sourceforge.net/p/mupif/code/ci/master/tree/examples/Example01/

Fig. 1: Output from Example01.py

The platform installation comes with many examples, located in ​examples​ subdirectory of
platform installation and also accessible ​online​ in the platform repository. They illustrate various
aspects, including field mapping, vtk output, etc.

9/54

https://sourceforge.net/p/mupif/code/ci/master/tree/examples/

5. Platform APIs

In this chapter are presented the abstract interfaces (APIs) of abstract classes that have been
designed to represent basic building blocks of the complex multi-physics simulations, including
individual simulation packages, but also the high level complex data (such as spatial fields and
properties). The abstract base classes are defined for all relevant entities. Their primary role is
to define abstract interfaces (APIs), which allow manipulating individual objects using generic
interface without being concerned by internal details of individual instances. One of the key and
distinct features of the MuPIF platform is that such an abstraction (defined by top level classes)
is not only developed for individual models, but also defined for the simulation data themselves.
The focus is on services provided by objects and not on underlying data. The object
representation of data encapsulates the data themselves, related metadata, and related
algorithms. Individual models then do not have to interpret the complex data themselves; they
receive data and algorithms in one consistent package. This also allows the platform to be
independent of particular data format, without requiring any changes on the model side to work
with new format.

In the rest of this section, the individual abstract classes and their interfaces are described in
detail. For each class a table is provided, where on the left column the individual services and
their arguments are presented, following the Pydoc [7] syntax. In the right column, the
description of individual service is given, input arguments are described (denoted by ARGS)
including their type (in parenthesis). The return values are described in a similar way (denoted
by Returns). More extensive documentation of MuPIF abstract classes exist in MuPIF
documentation [8].

5.1. Application class

This abstract class represents an external application and defines its interface. The interface is
defined in terms of abstract services for data exchange and steering. Derived classes represent
individual simulation tools. The data exchange services consist of methods for getting and
registering external properties, fields, and functions, which are represented using
corresponding, newly introduced classes. Steering services allow invoking (execute) solution for
a specific solution step, update solution state, terminate the application, etc.

Service

Description

__init__ (self, file)

Constructor. Initializes the application.

ARGS​:

- file (str): path to application

initialization file.

10/54

getField(self,fieldID, time)

Returns the requested field at given time. Field is

identified by fieldID.

ARGS​:

- fieldID (FieldID): identifier

- Time (double): target time

Returns​: Returns requested field (Field).

setField(self, field)

Registers the given (remote) field in application.

ARGS​:

- field (Field): remote field to be registered

by the application

Returns​:​ ​None

getProperty(self,propID,

time, objectID=0)

Returns property identified by its ID evaluated at

given time.

ARGS​:

- propID (PropertyID): property ID

- time (double): time when property to be

evaluated

- objectID (int): identifies object/submesh on

which property is evaluated (optional)

Returns​: Returns representation of requested

property (Property).

setProperty(self,
property,
objectID=0)

Register given property in the application

ARGS​:

- property (Property): the property class

- objectID (int): identifies object/submesh on

which property is evaluated (optional)

Returns​:​ ​None

getFunction(self,funcID,

objectID=0)

Returns function identified by its ID

ARGS​:

- funcID (FunctionID): function ID

- objectID (int): identifies optional

object/submesh

Returns​: Returns requested function(Function)

setFunction(self,func,

objectID=0)

Register given function in the application

ARGS​:

- func(Function): function to register

- objectID (int): identifies optional

object/submesh

11/54

getMesh (self, tstep)

Returns the computational mesh for given solution

step.

ARGS​:

- tstep(TimeStep): solution step

Returns​: Returns the representation of mesh (Mesh)

solveStep(self, tstep,

stageID=0,

runInBackground=False)

Solves the problem for a given time step. Evaluates

the solution from actual state to given time.

The actual state should not be updated at the end,

as this method could be called multiple times for

the same solution step until the global convergence

is reached. When global convergence is reached,

finishStep is called and then the actual state has

to be updated.

Solution can be split into individual stages

identified by optional stageID parameter. In between

the stages, the additional data exchange can be

performed. See also wait and isSolved services.

ARGS​:

- tstep(TimeStep): solution step

- stageID(int): optional argument identifying

solution stage

- runInBackground(bool): if set to True, the

solution will run in background (in separate

thread), if supported.
Returns​: None

wait(self)

Wait until solve is completed when executed in

background.

Returns​: None

isSolved(self)

Returns true or false depending whether solve has

completed when executed in background.

Returns​: (Boolean)

finishStep(self, tstep)

Called after a global convergence within a time

step.

ARGS​:

- tstep(TimeStep): solution step

Returns​: None

getCriticalTimeStep(self)

Returns the actual (related to the current state)

critical time step increment (double).

Returns​: Critical time step (double)

12/54

getAssemblyTime(self, tstep)

Returns the assembly time related to a given time

step. The registered fields (inputs) should be

evaluated in this time.

ARGS​:

- tstep (TimeStep): solution step

Returns​: Assembly time (double)

storeState(self, tstep)

Store the solution state of an application.

ARGS​:

- tstep(TimeStep): solution step

Returns​: None

restoreState(self, tstep)

Restore the saved state of an application.

ARGS​:

- tstep(TimeStep): solution step

Returns​: None

terminate(self)

Terminates the application.
Returns​: None

getAPIVersion(self)

Returns the supported API version.

Returns​:​ ​API version (int)

5.2. Property class

Property is a characteristic value of a problem, which has no spatial variation. Property is
identified by ​PropertyID​, which is an enumeration determining its physical meaning. It can
represent any quantity of a scalar, vector, or tensorial type. Property keeps its value, type,
associated time and an optional ​objectID​, identifying related component/subdomain.

Service

Description

__init__(self, value,

propID, valueType, time,

objectID=0)

Constructor, initializes the property.

ARGS​:

- value (tuple): value of a property. Scalar

value is represented as array of size 1. Vector

is represented as values packed in a tuple.

Tensor is represented as 3D tensor stored in a

tuple, column by column.

- propId (PropertyID): property ID

- valueType (ValueType): type of property value

- time (double): time

13/54

- objectID (int): optional ID of problem object /

subdomain to which property is related.

getValue(self)

Returns the value of property in a tuple.

Returns​:​ ​Property value as array (tuple)

getPropertID(self)

Returns type of property.

Returns​:​ ​Receiver property ID (PropertyID)

getObjectID(self)

Returns property objectID.

Returns​:​ ​ID of related object (int)

5.3. Field class

Representation of field. ​Field is a scalar, vector, or tensorial quantity defined on a spatial
domain (represented by the ​Mesh class). The field provides interpolation services in space, but
is assumed to be fixed in time (the application interface allows to request field at specific time).
The fields are usually created by the individual applications (sources) and being passed to
target applications. The field can be evaluated in any spatial point belonging to underlying
domain. Derived classes will implement fields defined on common discretizations, like fields
defined on structured or unstructured FE meshes, finite difference grids, etc. Basic services
provided by the field class include a method for evaluating the field at any spatial position and a
method to support graphical export (creation of VTK dataset).

Service Description

__init__(self, mesh, fieldID,

valueType, time, values=None)

Constructor. Initializes the field instance.

ARGS​:

- mesh (Mesh): Instance of Mesh class

representing underlying discretization.

- fieldID (FieldID): field type

- valueType (ValueType): type of field values

- time (double): time

- values (tuple): field values, usually at mesh

vertices (format dependent of particular

field type)

getMesh(self)

Returns representation of underlying

discretization.

Returns​:​ ​Reference to associated mesh (Mesh)

14/54

getValueType(self)

Returns type of field values (ValueType) of the

receiver.

Returns​:​ ​(ValueType)

getFieldID(self) Returns​:Field ID (FieldID)

evaluate(self, position,

eps=0.001)

Evaluates the receiver at given spatial position.

ARGS​:

- position (tuple, list of tuples): 3D position

vector or list of position vectors

- eps(double): Optional tolerance

Returns​: Receiver value or list of values evaluated

at given position(s) (tuple, list of tuples)

getValue(self, componentID)

Returns the value associated to given component

(vertex or cell IP, implementation dependent).

ARGS​:

- componentID (tuple): identifies the

component (vertexID) or (CellID, IPID)

Returns​: component value (tuple)

setValue(self, componentID,

value)

Sets the value associated to given component

(vertex or cell IP). Note, that the field values

are updated after a commit method is invoked.

ARGS​:

- componentID (tuple): The componentID is a

tuple: (vertexID) or (CellID, IPID)

- value(tuple): Component value
Returns​:​ ​None

commit(self)

Commits the recorded changes (via setValue method).

Returns​: None

merge(self, field)

Merges the receiver with a given field together.

Both fields should be on different parts of the

domain (can also overlap), but should be of the

same type and refer to the same underlying

discretization.

ARGS​:

- field (Field): field to merge

Returns​: None

field2VTKData (self)

Returns VTK representation of the receiver.

Returns​:

 ​VTK dataset (VTKDataSource)

15/54

5.4. Function class

Represents a user defined function. Function is an object defined by mathematical expression
and can be a function of spatial position, time, and other variables. Derived classes should
implement evaluate service by providing a corresponding expression. The function arguments
are packed into a dictionary, consisting of pairs (called items) of keys and their corresponding
values.

Service Description

__init__(self,funcID,

objectID=0)

Constructor. Initializes the function.

ARGS​:

- funcID (FunctionID): function ID

- objectID (int): optional ID of associated subdomain.

evaluate (self, d)

Evaluates the function for given parameters packed as a

dictionary. A dictionary is container type that can store

any number of Python objects, including other container

types. Dictionaries consist of pairs (called items) of keys

and their corresponding values.

Example:

d={'x':(1,2,3), 't':0.005} initializes dictionary containing

tuple (vector) under 'x' key, double value 0.005 under 't'

key.

Some common keys:
- ​'x': position vector

- 't': time

ARGS​:

- d (dictionary): dictionary containing function

arguments (number and type depends on particular

function)

RETURNS​: function value (tuple) evaluated for given

parameters

getID (self)

Returns receiver's ID.

Returns​: id (FunctionID)

getObjectID(self) Returns​:​ ​returns receiver's object ID (int)

5.5. TimeStep class

Class representing solution time step. The time step manages its number, target time, and time
increment.

16/54

Service Description

__init__(self, t, dt, n=1)

Constructor. Initializes the new time step.

ARGS​:

- t (double): time

- dt (double): step length (time increment)

- n (int): time step numbeR

getTime(self)

Returns​: Time step time (double)

getTimeIncrement(self)

Returns​: time increment (double)

getNumber(self) Returns​:​ ​receiver's number (int)

5.6. Mesh class

Mesh class is an abstract representation of a computational domain and its spatial
discretization. The mesh geometry is described using computational cells (representing finite
elements, finite difference stencils, etc.) and vertices (defining cell geometry). Derived classes
represent structured, unstructured FE grids, FV grids, etc. Mesh is assumed to provide a
suitable instance of cell and vertex localizers. In general, the mesh services provide different
ways how to access the underlying interpolation cells and vertices, based on their numbers, or
spatial location.

Service

Description

__init__(self) Constructor, creates an empty mesh.

copy(self)

This will return a copy of the receiver. Note, that

DeepCopy will not work, as individual cells contain

mesh link attributes, leading to underlying mesh

duplication in every cell.

Returns​:​ ​Copy of receiver (Mesh)

getNumberOfVertices(self)

Returns​:

 ​Number of Vertices (int)

getNumberOfCells(self)

Returns​:

 Number of Cells

17/54

getVertex(self, i)

Returns i-th vertex (i corresponds to a vertex

number, not a label).

Returns​:​ ​vertex (Vertex)

getCell(self, i)

Returns i-th cell (identified by cell number, not

label).

Returns​:​ ​cell (Cell)

vertexLabel2Number(self,

label)

Returns local vertex number corresponding to given

label. If no label corresponds, throws an exception.

Returns​:​ ​vertex number (int)

cellLabel2Number(self,

label)

Returns local cell number corresponding to a given

label. If no label corresponds, it throws an

exception.

Returns​:​ ​cell number (int)

getVerticesInBBox

(self, bbox):

Returns the list of all vertices which are inside

given bounding Box

ARGS​:

- bbox (BoundingBox): bounding box

Returns​:​ ​list of vertices inside bbox (list)

getCellsInBBox (self,

bbox):

Returns the list of cells which bbox intersects with

given bounding box

ARGS​:

- bbox (BoundingBox): bounding box

Returns​:​ ​list of cells at least partially in bbox
(list)

evaluateVertices(self,

functor):

Returns the list of all vertices for which the

functor is satisfied. The functor is a user defined

class with two methods: ​giveBBox​() which returns an

initial functor bbox, and ​evaluate​ (obj) which should

return true if functor is satisfied for a given

object.

ARGS​:

- functor: functor class

Returns​:list of all vertices for which the functor is

satisfied (list)

evaluateCells(self,

functor):

Returns the list of all cells for which the functor

is satisfied. The functor is user defined class with

two methods:​getBBox​() which returns an initial

functor bbox, and ​evaluate​ (obj) which should return

true if functor is satisfied for given object.

ARGS​:

18/54

- functor: functor class

Returns​:List of all cells for which the functor is

satisfied (list)

5.7. Cell class

Representation of a computational cell (finite element). The solution domain is composed of
cells, whose geometry is defined using vertices. Cells provide interpolation over their associated
volume, based on given vertex values. Derived classes will be implemented to support common
interpolation cells (finite elements, FD stencils, etc.)

Service Description

__init__(self, mesh, number, label,

vertices)
Constructor. Creates the new cell.

ARGS​:

- mesh(Mesh): the mesh to which cell

belongs.

- number(int): local cell number

- label(int): cell label

- vertices(tuple): cell vertices (local

numbers)

copy(self)

This will copy the receiver, making deep

copy of all attributes EXCEPT mesh

attribute

Returns​:​ ​the copy of receiver (Cell)

getVertices(self) Returns​:​ ​the list of cell vertices (tuple of
Vertex instances)

containsPoint(self, point)

Returns​: True if cell contains given point,

False otherwise

getGeometryType(self)

Returns​:​ ​geometry type of receiver
(CellGeometryType)

getBBox(self) Returns​:​ ​bounding box of the receiver (BBox)

5.8. Vertex class

Represents a vertex. In general, a set of vertices defines the geometry of interpolation cells. A
vertex is characterized by its position, number and label. Vertex number is locally assigned
number (by ​Mesh​ class), while a label is a unique number defined by application.

19/54

Service Description

__init__(self, number, label,

coords=None)

Constructor. Creates the new vertex

instance.

ARGS​:

- number(int): local vertex number

- label(int): vertex label

- coords(tuple): 3D position vector of

verteX

getCoordinates(self) Returns​:​ ​receiver coordinates (tuple)

getNumber(self) Returns​:​ ​receiver number (int)

getLabel(self) Returns​:​ ​receiver label (int)

5.9. BoundingBox

Represents an axis aligned bounding box - a rectangle in 2d and a prism in 3d. Its geometry is
described using two points - lover left and upper right. The bounding box class provides fast and
efficient methods for testing whether point is inside and whether an intersection with another
bounding box exists.

Service

Description

__init__(self, coords_ll,

coords_ur)

Constructor. Creates the new Bounding box instance.

ARGS​:

- coords_ll (tuple): coordinates of lower left

corner

- coords_ur (tuple): coordinates of upper right

corner

containsPoint (self, point)

Returns true if point inside receiver.

ARGS​:

- point (tuple): point coordinates

Returns​:​ ​True if point is inside receiver, false
otherwise (Bool)

intersects (self, bbox)

Returns​:​ ​Returns true if receiver intersects given
bounding box (Bool)

20/54

merge (self, entity)

Merges (expands) receiver with given entity

(position or bbox)

ARGS​:

- entity (tuple or BoundingBox): position

vector (tuple) or bounding box.

Returns​:​ ​None

5.10. APIError

This class serves as a base class for exceptions thrown by the framework. Raising an exception
is a way to signal that a routine could not execute normally - for example, when an input
argument is invalid (e.g. value is outside of the domain of a function) or when a resource is
unavailable (like a missing file, a hard disk error, or out-of-memory errors). A hierarchy of
specialized exceptions can be developed, derived from the ​APIError​ class.
Exceptions provide a way to react to exceptional circumstances (like runtime errors) in programs
by transferring control to special functions called handlers. To catch exceptions, a portion of
code is placed under exception inspection. This is done by enclosing that portion of code in a
try-block. When an exceptional circumstance arises within that block, an exception is thrown
that transfers the control to the exception handler. If no exception is thrown, the code continues
normally and all handlers are ignored.
An exception is thrown by using the throw keyword from inside the try-block. Exception handlers
are declared with the keyword "except", which must be placed immediately after the try block.

Service Description

__init__(self,msg)

Constructor. Initializes the exception.

ARGS​:

- msg (string) Error message

__str__(self)

Returns​:

 ​string representation of the exception, ie. error message
(string).

21/54

6. Developing Application Program Interface (API)

In order to establish an interface between the platform and external application, one has to
implement an Application class. This class defines a generic interface in terms of general
purpose, problem independent, methods that are designed to steer and communicate with the
application. The Table 2 presents an overview of application interface, the full details with
complete specification can be found in ​5.1. Application class​ specification.

Method Description

__init__(self, file) Constructor. Initializes the application.

getMesh (self, tstep) Returns the computational mesh for given
solution step.

getField(self, fieldID, time) Returns the requested field at given time.
Field is identified by fieldID.

setField(field) Registers the given (remote) field in
application.

getProperty(self, propID, time, objectID=0)

Returns property identified by its ID evaluated
at given time.

setProperty(self, property, objectID=0)

Register given property in the application

setFunction(self, func,objectID=0)

Register given function in the application

solveStep(self, tstep) Solves the problem for given time step.

finishStep(self, tstep) Called after a global convergence within a
time step.

getCriticalTimeStep() Returns the actual critical time step
increment.

getApplicationSignature() Returns the application identification

terminate() Terminates the application.

Table 2: Application interface: an overview of basic methods.

From the perspective of individual simulation tool, the interface implementation can be achieved
by means of either direct (native) or indirect implementation.

22/54

● Native implementation requires a simulation tool written in Python, or a tool with
Python interface. In this case the Application services will be implemented directly using
direct calls to suitable application’s functions and procedures, including necessary
internal data conversions. In general, each application (in the form of a dynamically
linked library) can be loaded and called, but care must be taken to convert Python data
types into target application data types. More convenient is to use a wrapping tool (such
as Swig [5] or Boost [6]) that can generate a Python interface to the application,
generally taking care of data conversions for the basic types. The result of wrapping is a
set of Python functions or classes, representing their application counterparts. The user
calls an automatically generated Python function which performs data conversion and
calls the corresponding native equivalent.

● Indirect implementation ​is based on wrapper class implementing Application interface
that implements the interface indirectly, using, for example, simulation tool scripting or
I/O capabilities. In this case the application is typically standalone application, executed
by the wrapper in each solution step. For the typical solution step, the wrapper class has
to cache all input data internally (by overloading corresponding set methods), execute
the application from previously stored state, passing input data, and parsing its output(s)
to collect return data (requested using get methods).

Fig. 2: Illustration of indirect approach

The example illustrating the indirect implementation is available from MuPIF distribution, located
in ​examples/Example03 ​directory. Typically, this is a three-phase procedure. In the first step,
when external properties and fields are being set, the application interface has to remember all
these values. In the second step, when the application is to be executed, the input file is to be
modified to include the mapped values. After the input file(s) are generated, the application itself
is executed. In the last, third step, the computed properties/fields are requested. They are
typically obtained by parsing application output and returned. This three-step procedure is
illustrated in the following example listing taken from Example03. In this example, the
application should compute the average value from mapped values of concentrations over the
time. The external application is available, that can compute an average value from the input
values given in a file. The application interface accumulates the mapped values of
concentrations in a list data structure, this is done is setProperty method. During the solution
step in a solveStep method, the accumulated values of concentrations over the time are written

23/54

into a file, the external application is invoked taking the created file as input and producing an
output file containing the computed average. The output file is parsed when the average value
is requested using getProperty method.

Fig. 3: Typical workflow in indirect approach for API implementation

7. Developing user workflows

Multiscale/multiphysics simulations are natively supported in MuPIF, allowing easy data passing
from one model to another one, synchronizing and steering all models. Simulation workflow of
multiscale/multiphysics simulations, called also a simulation scenario, defines data flow among
various models and their steering. Natively, the workflow in MuPIF is represented as Python
script combining MuPIF components into workflow. However, a many benefits can be further
gained by implementing a workflow as class derived from abstract ​Workflow class. The benefits
and example are discussed in chapter “​Workflow as a class​”.

7.2 Workflow templates

24/54

Sequential workflow template

Loosely coupled workflow template

25/54

7.3 Workflow example

A thermo-mechanical, multiphysical example ​Demo13.local.py explains linking and steering in
greater detail. The example presents a local (non-distributed) version and can be found under
examples/Example13-thermoMechanicalNonStat​ directory of MuPIF installation.

A cantilever, clamped on the left hand side edge, is subjected to nonstationary temperature
loading, see Figure 4. Heat convection is prescribed on the top edge with ambient temperature
10°C. Left and bottom edges have prescribed temperature 0°C, the right edge has no boundary
condition. Initial temperature is set to 0°C, heat conductivity is 1 W/m/K, heat capacity 1.0
J/kg/K, material density 1.0 kg/m​3​. The material has assigned Young's modulus as 30 GPa,
Poisson's ratio 0.25 and coefficient of linear thermal expansion 12e-6°C​-1​. Integration time step
is constant as 1 s, 10 steps are executed in total.

Fig. 4: Elastic cantilever subjected to thermal boundary conditions.

First, the temperature distribution has to be solved in the whole domain from the given initial and
boundary conditions. The temperature field is passed afterwards to the mechanical analysis,
which evaluates the corresponding displacement field. Such simulation flow is depicted in
Figure 5, linking two models in discretized time steps. The thermal model implements
getField(T) and ​solveStep(istep) methods. In addition, the mechanical model needs to set up an
initial thermal field ​setField(T) prior to execution in each time step. Steering occurs in 1s
increments, calling thermal and mechanical models.

26/54

Fig. 5: Thermo-mechanical simulation flow

The discretizations for thermal and mechanical problems are in this particular case different and
the platform takes care of field interpolation. The mesh for thermal problem consist of 50 linear
elements with linear approximation and 55 nodes. The mesh for mechanical analysis consist of
168 nodes and 160 elements with linear approximation. Results for 10 s are shown in Figure 6.

27/54

Fig. 6: Results of thermo-mechanical simulation at 10 s

A code below shows a thermo-mechanical simulation in ​Example13​. Thermal and mechanical
solvers are implemented as ​demoapp module and loaded from ​Example10 directory. It is
straightforward to extend this workflow for distributed version which needs in addition a
nameserver and VPN/ssh tunnels, as described in subsequent chapters.

from __future__ import print_function
import sys
sys.path.append('../../..')
from mupif import *
from mupif import logger
sys.path.append('../Example10')
import demoapp

time = 0.
dt = 0.
timestepnumber = 0
targetTime = 10.0

thermal = demoapp.thermal_nonstat('inputT13.in','.')
mechanical = demoapp.mechanical('inputM13.in', '.')

while (abs(time - targetTime) > 1.e-6):

logger.debug("Step: %g %g %g"%(timestepnumber,time,dt))

28/54

istep = TimeStep.TimeStep(time, dt, timestepnumber)

try:
 thermal.solveStep(istep)
 f = thermal.getField(FieldID.FID_Temperature, istep.getTime())
 data = f.field2VTKData().tofile('T_%s'%str(timestepnumber))

 mechanical.setField(f)
 sol = mechanical.solveStep(istep)
 f = mechanical.getField(FieldID.FID_Displacement, istep.getTime())
 data = f.field2VTKData().tofile('M_%s'%str(timestepnumber))

 thermal.finishStep(istep)
 mechanical.finishStep(istep)

 dt = min (thermal.getCriticalTimeStep(), mechanical.getCriticalTimeStep())

 # update time
 time = time+dt
 if (time > targetTime):
 time = targetTime
 timestepnumber = timestepnumber+1

except APIError.APIError as e:
 logger.error("Following API error occurred:",e)
 break

thermal.terminate();
mechanical.terminate();

Listing 2: ​Example13​ showing a thermo-mechanical simulation

As already mentioned, the thermo-mechanical simulation chain can run in various
configurations, composed of a steering script, nameserver, thermal and mechanical
applications. Table 3 shows MuPIF examples of thermo-mechanical configuration. In principle,
each component can run on different computer, except a steering script.

 Steering
script

Nameserver Thermal
application

Mechanical
application

Example13 local Local - Local Local

Example14 VPN Local Remote Remote Remote

Example15 ssh JobMan Local Remote Remote JobMan Local

29/54

Example16 VPN JobMan Local Remote Remote JobMan Local

Table 3: Examples of thermo-mechanical simulation on local and various distributed
configurations.

7.4 Workflow as a class

The object oriented design of MuPIF allows to build a hierarchy of workflows, where the top
level workflow may utilise the components, which may be again workflows. From this point of
view, any workflow can be regarded as an application, composed from individual components,
implementing itself an application interface. The application interface, as introduced in Chapter
on Platform APIs, allows to perform any data and steering operation, i.e. to get and set any
data, update response for the given solution step, etc.
Another important advantage of having workflow represented as a class is that the individual
workflows can be allocated and executed by a jobManager on remote resources in a same way
as individual applications.
MuPIF comes with abstract ​Workflow class, derived from ​Application class, supposed to be a
parent class for any workflow represented as a class. It extends the ​Application interface by
defining ​solve method, which implements a time loop over the individual time steps, solved by
solveStep​ method defined already in ​Application​ interface.

The default implementation of Workflow solve method is shown in a listing below. It generates a
sequence of time steps satisfying the stability requirements till reaching the target time. If the
default implementation does not fit, the method can be overloaded.

class Workflow(Application.Application):
def solve(self, runInBackground=False):

 time = 0.
 timeStepNumber = 0

 while (abs(time-self.targetTime) > 1.e-6):
 dt = self.getCriticalTimeStep()
 time=time+dt
 if (time > self.targetTime):
 time = targetTime
 timeStepNumber = timeStepNumber+1
 istep=TimeStep.TimeStep(time,dt, timeStepNumber)

 self.solveStep(istep)
 self.finishStep(istep)

30/54

 self.terminate()

The subsequent code snippet illustrates the concept on coupled, steady-state
thermo-mechanical workflow. The implementation should be extending by implementing the
get/set methods to interact with other components. The working example of workflow defined as
a class can be found in examples/Example18 directory of MuPIF installation (Available since
MuPIF version 2.0)

class Demo18(Workflow.Workflow):
 def __init__ (self, targetTime=0.):
 super(Demo18, self).__init__(file='', workdir='', targetTime=targetTime)
 ​# initialize / connect to individual applications
 locate nameserver
 ns = PyroUtil.connectNameServer(nshost, nsport, hkey)
 #connect to JobManager running on (remote) server and create a tunnel to it
 self.thermalJobMan = PyroUtil.connectJobManager(ns, cfg.jobManName)
 #allocate the thermal server
 self.thermal = PyroUtil.allocateApplicationWithJobManager(ns,self.thermalJobMan,
 jobNatport, PyroUtil.SSHContext(userName, sshClient))
 # connect to standalone mechanical server;
 self.mechanical = PyroUtil.connectApp(ns, 'mechanical')

def solveStep(self, istep, stageID=0, runInBackground=False):
 self.thermal.solveStep(istep)
 f = self.thermal.getField(FieldID.FID_Temperature, istep.getTime())
 self.mechanical.setField(f)
 self.mechanical.solveStep(istep)
 f = self.mechanical.getField(FieldID.FID_Displacement, istep.getTime())
 data = f.field2VTKData().tofile('M_%s'%str(istep.getNumber()))
 self.thermal.finishStep(istep)
 self.mechanical.finishStep(istep)

def getCriticalTimeStep(self):
 # determine critical time step
 return min
(self.thermal.getCriticalTimeStep(),self.mechanical.getCriticalTimeStep())

def terminate(self):
 self.thermalAppRec.terminateAll()
 self.mechanical.terminate()

31/54

 super(Demo18, self).terminate()

def getApplicationSignature(self):
 return "Demo18 workflow 1.0"

8. Distributed Model

Common feature of parallel and distributed environments is a distributed data structure and
concurrent processing on distributed processing nodes. This brings in an additional level of
complexity that needs to be addressed. To facilitate execution and development of the
simulation workflows, the platform provides the transparent communication mechanism that will
take care of the network communication between the objects. An important feature is the
transparency, which hides the details of remote communication to the user and allows to work
with local and remote objects in the same way.

The communication layer is built on ​Pyro library [4], which provides a transparent distributed
object system fully integrated into Python. It takes care of the network communication between
the objects when they are distributed over different machines on the network. One just calls a
method on a remote object as if it were a local object – the use of remote objects is (almost)
transparent. This is achieved by the introduction of so-called proxies. A proxy is a special kind of
object that acts as if it were the actual object. Proxies forward the calls to the remote objects,
and pass the results back to the calling code. In this way, there is no difference between
simulation script for local or distributed case, except for the initialization, where, instead of
creating local object, one has to connect to the remote object.

32/54

https://pythonhosted.org/Pyro4/

Fig. 7: Comparison of local vs. remote object communication scenarios

To make an object remotely accessible, it has to be registered with the daemon, a special object
containing server side logic which dispatches incoming remote method calls to the appropriate
objects. To enable runtime discovery of the registered objects, the name server is provided,
offering a phone book for Pyro objects, allowing to search for objects based on logical name.
The name server provides a mapping between logical name and exact location of the object in
the network, so called uniform resource identifier (URI). The process of object registration and of
communication with remote objects (compared to local objects) is illustrated in Fig. 7.

8.1. Distributed aspects of the API

One of the important aspect in distributed model is how the data are exchanged between
applications running at different locations. The Pyro4 communication layer allows to exchange
data in terms of get and set API methods in two ways. The communication layer automatically
takes care of any object that is passed around through remote method calls. The receiving side
of a call can receive either a local copy of the remote data or the representation of the remote
data (Proxy).

● The communication in terms of exchanging local object copies can be less efficient than
communication with remote objects directly, and should be used for objects with low
memory footprint. One potential advantage is that the receiving side receives the copy of
the data, so any modification of the local copy will not affect the source, remote data.
Also multiple method invocation on local objects is much more efficient, compared to
costly communication with a remote object.

● On the other hand, the data exchange using proxies (references to remote data) does
not involves the overhead of creating the object copies, which could be prohibitively
large for complex data structures. Also, when references to the remote objects are
passed around, the communication channel must be established between receiving side

33/54

and remote computer owning the actual object, while passing local objects requires only
communication between caller and receiver.

Both approaches have their pros and cons and their relative efficiency depends on actual
problem, the size of underlying data structures, frequency of operations on remote data, etc.

Pyro4 will automatically take care of any Pyro4 objects that you pass around through remote
method calls. If the autoproxying is set to on (AUTOPROXY = True by default), Pyro4 will
replace objects by a proxy automatically, so the receiving side can call methods on it and be
sure to talk to the remote object instead of to a local copy. There is no need to create a proxy
object manually, a user just has to register the new object with the appropriate daemon. This is
a very flexible mechanism, however, it does not allow explicit control on the type of passed
objects (local versus remote).

Typically, one wants to have explicit control whether objects are passed as proxies or local
copies. The get methods (such as ​getProperty​, ​getField​) should not register the returned object
at the Pyro4 daemon. When used, the remote receiving side obtains the local copy of the object.
To obtain the remote proxy, one should use ​getFieldURI​ API method, which calls getField
method, registers the object at the server daemon and returns its URI. The receiving side then
can obtain a proxy object from URI. This is illustrated in the following code snippet:

field_uri = Solver.getFieldURI(FieldID.FID_Temperature, 0.0)
field_proxy = Pyro4.Proxy(uri)

8.2. Requirements for distributed computing

To enable the discovery of remote objects a nameserver service is required, allowing to keep
track of individual objects in network. It is also allows to use readable uniform resource
identifiers (URI) instead of the need to always know the exact object id and its location.

The platform is designed to work on virtually any distributed platform, including grid and cloud
infrastructure. For the purpose of performing simulations within a project, it is assumed that
individual simulations and therefore the individual simulation packages will be distributed over
the network, running on dedicated servers provided by individual partners, forming grid-like
infrastructure.
According to requirements specified in D1.2 Software Requirements Specification Document for
Cloud Computing [2], different functional requirements have been defined, with different levels
of priorities. Typical requirements include services for resource allocation, access and license
control, etc. In the project, we decided to follow two different strategies, how to fulfill these
defined requirements. The first one is based on developing custom solution for resource
allocation combined with access control based on standardized SSH technology based on
public key cryptography for both connection and authentication. It uses platform distributed
object technology and this allows its full integration in the platform. This solution is intended to
satisfy only the minimum requirements, but its setup and operation is easy. It setup does not

34/54

requires administrative rights and can be set up and run using user credentials. The second
approach is based on established condor middleware. This solution provides more finer control
over all aspects. On the other hand, its setup is more demanding. The vision is to allow the
combination of both approaches. Both approaches and their requirements are described in
following sections.

8.3. Internal platform solution - JobManager resource allocation

This solution has been developed from a scratch targeting fulfilment of minimal requirements
only while providing simple setup. The resource allocation is controlled by ​JobManager​. Each
computational server within a platform should run an instance of JobManager, which provides
services for allocation of application instances based on user request and monitoring services.

The ​JobManager is implemented as python object like any other platform components and is
part of platform source code. It is necessary to create an instance of ​JobManager on each
application server and register it on the platform nameserver to make it accessible for clients
running simulation scenarios. This allows to access ​JobManager services using the same Pyro
technology, which makes the resource allocation to be part of the the simulation scenario.
Typically, the simulation scenario script first establishes connection to the platform nameserver,
which is used to query and create proxies of individual ​JobManagers​. The individual
JobManagers are subsequently requested to create the individual application instances (using
allocateJob service) and locally represented by corresponding proxy objects. Finally, the
communication with remote application instances can be established using proxies created in
the previous step, see Fig. 8 illustrating typical work flow in the distributed case.

The job manager has only limited capability to control allocated resources. In the present
implementation, the server administrator can impose the limit on number of allocated
applications. The configuration of the jobmanager requires only simple editing of configuration
file. The individual applications are spawned under new process to enable true concurrency of
running processes and avoid limitations of Python related to concurrent thread processing.

35/54

Fig. 8: Typical control flow with resource allocation using JobManager.

The status of individual job managers can be monitored with the jobManStatus.py script, located
in tools subdirectory of the platform distribution. This script displays the status of individual jobs
currently running, including their run time and user information. The information displayed is
continuously refreshed, see Fig. 9.

36/54

Fig. 9: Screenshot of Job Manager monitoring tool

The internal jobManager does not provide any user authentication service at the moment. The
user access is assumed to be controlled externally, using ssh authorization. For example, to
establish the authorized connection to a remote server and platform services (jobManager)
using a ssh tunnel, a valid user credentials for the server are required. The secured,
authenticated connection is realized using setting up ssh tunnel establishing a secure and
trusted connection to a server. The ssh connections can be authorized by traditional
user/passwords or by accepting public ssh keys generated by individual clients and send to
server administrators. More details are given in a Section on SSH tunneling.

The status of individual computational servers can be monitored online using the provided
monitoring tool. A simple ping test can be executed, verifying the connection to the particular
server and/or allocated application instance.

8.3.1. Setting up a Job Manager

The skeleton for application server is distributed with the platform and is located in
examples/Example06-JobMan​. The following files are provided:

37/54

● server.py: The implementation of application server. It starts JobManager instance and
corresponding daemon. Most likely, no changes are required.

● serverConfig.py: configuration file for the server. The individual entries have to be
customized for particular server. Follow the comments in the configuration file. In the
example, the server is configured to run on Unix-based system.

● JobMan2cmd.py: python script that is started in a new process to start the application
instance and corresponding daemon. Its behaviour can be customized by Config.py.

● test.py: Python script to verify the jobManager functionality.
● clientConfig.py: configuration file for client code (simulation scenarios). The client can

run on both Unix / Windows systems, configuring correctly ssh client.

The setup requires to install the platform, as described in ​3. Platform installation​. Also, the
functional application API class is needed. Fig. 10 shows the flowchart with a JobManager using
ssh tunnels.

Fig. 10: ​Example06-JobMan​ displaying ports and tunnels in a distributed setup using ssh
tunnels.

The recommended procedure to set up job manager for your server is to create a separate
directory, where you will copy the server.py and serverConfig.py files from
examples/Example06-JobMan​ directory and customize settings in serverConfig.py.

38/54

Simpler situation exists for VPN network setup where no ssh tunnels needs to be allocated and
all communication runs on a local-like network.

Fig. 11: ​Example16​ thermo-mechanical analysis displaying ports and tunnels in a distributed
setup using VPN.

8.3.2. Configuration

The configuration of the job manager consists of editing the configuration file (serverConfig.py).
The following variables can be used to customize the server settings:

Variable Description

deamonHost

hostname or IP address of the application
server, i.e.
daemonHost='147.32.130.137'

hostUserName user name to establish ssh connection to
server, i.e. hostUserName='mmp'

jobManPort Server port where job manager daemon
listens, i.e., jobManPort=44361.

39/54

jobManNatport Port reported by nameserver used to
establish tunnel to destination JobManager
port (jobManPort), i.e. jobManNatport=5555

jobManName

Name used to register jobManager at
nameserver, i.e,
jobManName='Mupif.JobManager@micress'

jobManPortsForJobs List of dedicated ports to be assigned to
application processes (recommended to
provide more ports than maximum number of
application instances, as the ports are not
relesead immediately by operating system,
see jobManMaxJobs)
Example:
jobManPortsForJobs=(9091, 9092, 9093,
9094)

jobManMaxJobs Maximum number of jobs that can be running
at the same time.
jobManMaxJobs=4

jobManWorkDir Path to JobManager working directory. In this
directory, the subdirectories for individual jobs
will be created and these will become working
directories for individual applications. Users
can upload/download files into these job
working directories. Note: the user running
job manager should have corresponding I/O
(read/write/create) permissions.

applicationClass Class name of the application API class. The
instance of this class will be created when
new application instance is allocated by job
manager. The corresponding python file with
application API definition need to be
imported.

The individual ports can be selected by the server administrator, the ports from range
1024-49152 can be used by users / see IANA (Internet Assigned Numbers Authority).

To start application server run:

$ python server.py

The command logs on screen and also in the server.log logfile the individual requests.

40/54

The status of the application server can be monitored on-line from any computer (provided you
have established ssh connection to server) using tools/jobManStatus.py monitor. To start
monitoring, run the following command:

$ python jobManStatus.py -j Mupif.JobManager@demo -h 147.32.130.137 -u mmp -p 44361 -n
147.32.130.137 -r 9090 -k mmp-secret-key -t

The -j option specifies the jobmanager name (as registered in pyro nameserver), -h determines
the hostname where jobmanager runs, -p determines the port where jobmanager is listening, -n
is hostname of the nameserver, -r is the nameserver port, -k allows to set PYRO hkey, -t
enforces the ssh tunnelling, and -u determines the username to use to establish ssh connection
on the server, see Fig. 12.

There is also a simple test script (tools/jobManTest.py), that can be used to verify that the
installation procedure was successful. It contact the application server and asks for new
application instance.

Fig. 12: Testing job manager in a simple setup

8.4. Securing the communication using SSH tunnels

8.4.1. Setting up ssh server

SSH server provides functionalities which generally allows to
● Securely transfer encrypted data / streams
● Securely transfer encrypted files (SFTP)

41/54

● Set up port forwarding via open ports, so called tunneling, allowing to get access to
dedicated ports through a firewall in between

● Remote command execution
● Forwarding or tunneling a port
● Securely mounting a directory on a remote server (SSHFS)

Ssh server is the most common on Unix systems, ​freeSSHd server can be used on Windows
free of charge. The server usually requires root privileges for running. Ssh TCP/UDP protocol
uses port 22 and uses encrypted communication by default.
Connection to a ssh server can be carried out by two ways. A user can authenticate by typing
username and password. However, MuPIF prefers authentication using asymmetric
private-public key pairs since the connection can be established without user’s interaction and
password typing every time. Fig. 13 shows both cases.

Fig. 13: Connection to a ssh server using username/password and private/public keys

Private and public keys can be generated using commands ​ssh-keygen for Unix and
puttygen.exe for Windows. Ssh2-RSA is the preferred key type, no password should be set up
since it would require user interaction. Keys should be stored in ssh2 format (they can be
converted from existing openSSH format using ​ssh-keygen or ​puttygen.exe​). Two files are
created for private and public keys; Unix ​id_rsa and ​id_rsa.pub files and Windows ​id_rsa.ppk
and ​id_rsa​ files. Private key is a secret key which remains on a client only.

Authentication with the keys requires appending a public key to the ssh server. On Unix ssh
server, the public key is appended to e.g. ​mech.fsv.cvut.cz:/home/user/.ssh/ authorized_keys​.
The user from a Unix machine can log in without any password using a ssh client through the
command

ssh user@mech.fsv.cvut.cz -i ~/project/keys/id_rsa

Ssh protocol allow setting up port forwarding via port 22, so called tunneling. Such scenario is
sketched in Fig. 14, getting through a firewall in between. Since the communication in

42/54

distributed computers uses always some computer ports, data can be easily and securely
transmitted over the tunnel.

Fig. 14: Creating a ssh forward tunnel

8.4.2. Example of distributed scenario with ssh tunneling

The process of allocating a new instance of remote application is illustrated on adapted version
of the local thermo-mechanical scenario, already presented in ​7. Developing user workflows​.
First, the configuration file is created containing all the relevant connection information, see
Listing 3.

#Network setup configuration
import sys, os, os.path
import Pyro4
Pyro config
Pyro4.config.SERIALIZER="pickle"
Pyro4.config.PICKLE_PROTOCOL_VERSION=2 #to work with python 2.x and 3.x
Pyro4.config.SERIALIZERS_ACCEPTED={'pickle'}
Pyro4.config.SERVERTYPE="multiplex"

#Absolute path to mupif directory - used in JobMan2cmd
mupif_dir = os.path.abspath(os.path.join(os.getcwd(), "../../.."))
sys.path.append(mupif_dir)

import logging

#NAME SERVER
nshost = '147.32.130.71' #IP/name of a name server
nsport = 9090 #Port of name server
hkey = 'mmp-secret-key' #Password for accessing nameServer and applications

#Remote server settings
server = '147.32.130.71' #IP/name of a server's daemon
serverPort = 44382 #Port of server's daemon
serverNathost = '127.0.0.1' #Nat IP/name (necessary for ssh tunnel)
serverNatport = 5555 #Nat port (necessary for ssh tunnel)

jobManName='Mupif.JobManager@Example' #Name of job manager

43/54

appName = 'MuPIFServer' #Name of application

#JobManager setup
portsForJobs=(9095, 9200) #Range of ports to be assigned on the server to jobs
jobNatPorts = list(range(6000, 6050)) #NAT client ports used to establish ssh
connections
maxJobs=4 #Maximum number of jobs
#Auxiliary port used to communicate with application daemons on a local computer
socketApps=10000 jobManWorkDir='.' #Main directory for transmitting files

jobMan2CmdPath = "../../tools/JobMan2cmd.py" #Path to JobMan2cmd.py

#CLIENT
erverUserName = os.getenv('USER')

#ssh client params to establish ssh tunnels
if(sys.platform.lower().startswith('win')):#Windows ssh client

sshClient = 'C:\\Program Files\\Putty\\putty.exe'
options = '-i L:\\.ssh\\mech\id_rsa.ppk'
sshHost = ''

else:#Unix ssh client
sshClient = 'ssh'
options = '-oStrictHostKeyChecking=no'
sshHost = ''

Listing 3: Simple example illustrating simulation scenario

The adapted simulation scenario is presented in Listing 4. This example assumes that the
nameserver and thermal solver run on remote server, while the mechanical solver is executed
locally on the same computer as simulation scenario. First, the simulation scenario connects to
the nameserver and subsequently the handle to thermal solver allocated by the corresponding
job manager is created using ​PyroUtil.allocateApplicationWithJobManager service. ​This service
first obtains the remote handle of the job manager for thermal application, requests allocation of
a new instance of thermal solver, returning an instance of RemoteAppRecord class, which
encapsulate all the details of opened connections, established ssh tunnels, etc. It provides two
useful methods: ​getApplication() ​returning application Proxy and ​terminate() that can be used to
correctly terminate the application and close all connections.

The listing shows the complete distributed scenario, with the required modifications highlighted
by the blue color. Note that the differences are only in the setup and terminating part, the core
logic of the scenario remains the same for local as well as distributed case.
This example is available in MuPIF distribution under
examples/Example15-thermoMechanicalNonStat-ssh-JobMan​ directory.

import sys
sys.path.extend(['..', '../../..'])
from mupif import *

44/54

import mupif
import conf as cfg

import time as timeTime
start = timeTime.time()
mupif.log.info('Timer started')

#locate nameserver
ns = PyroUtil.connectNameServer(nshost=cfg.nshost, nsport=cfg.nsport,
hkey=cfg.hkey)
#localize JobManager running on (remote) server and create a tunnel to it
#allocate the thermal server
solverJobManRec = (cfg.serverPort, cfg.serverNatport, cfg.server,
cfg.serverUserName, cfg.jobManName)

jobNatport = cfg.jobNatPorts.pop(0)

try:

appRec = PyroUtil.allocateApplicationWithJobManager(ns, solverJobManRec,
jobNatport, cfg.sshClient, cfg.options, cfg.sshHost)

thermal = appRec.getApplication()
except Exception as e:

mupif.log.exception(e)
else:

if thermal is not None:
 appsig=thermal.getApplicationSignature()
 mupif.log.info("Working thermalServer " + appsig)
 mechanical = PyroUtil.connectApp(ns, 'mechanical')

 time = 0.
 dt = 0.
 timestepnumber = 0
 targetTime = 10.0

 while (abs(time - targetTime) > 1.e-6):

 mupif.log.debug("Step: %g %g %g"%(timestepnumber,time,dt))
 # create a time step
 istep = TimeStep.TimeStep(time, dt, timestepnumber)

 try:
 thermal.solveStep(istep)
 f = thermal.getField(FieldID.FID_Temperature, istep.getTime())
 data = f.field2VTKData().tofile('T_%s'%str(timestepnumber))

 mechanical.setField(f)
 sol = mechanical.solveStep(istep)
 f = mechanical.getField(FieldID.FID_Displacement, istep.getTime())
 data = f.field2VTKData().tofile('M_%s'%str(timestepnumber))

 thermal.finishStep(istep)
 mechanical.finishStep(istep)

45/54

 # determine critical time step
 dt = min (thermal.getCriticalTimeStep(),
 mechanical.getCriticalTimeStep())

 # update time
 time = time+dt
 if (time > targetTime):
 # make sure we reach targetTime at the end
 time = targetTime
 timestepnumber = timestepnumber+1

 except APIError.APIError as e:
 log.error("Following API error occurred:",e)
 break
 mechanical.terminate();

else:
 mupif.log.debug("Connection to thermal server failed, exiting")

finally:

if appRec: appRec.terminateAll()

Listing 4: Simple example illustrating simulation scenario

8.4.3. Advanced SSH setting

When a secure communication over ssh is used, then typically a steering computer (a computer
executing top level simulation script/workflow) creates connections to individual application
servers. However, when objects are passed as proxies, there is no direct communication link
established between individual servers. ​This is quite common situation, as it is primarily the
steering computer and its user, who has necessary ssh-keys or credentials to establish
the ssh tunnels from its side, but typically is not allowed to establish a direct ssh link
between application servers. The solution is to establish such a communication channel
transparently via a steering computer, using forward and reverse ssh tunnels. The platform
provides handy methods to establish needed communication patterns (see
PyroUtil.connectApplications​ method and refer to ​example10​ for an example).

As an example, consider the simulation scenario composed of two applications running on two
remote computers as depicted in Fig. 15. The Pyro4 daemon on server 1 listens on
communication port 3300, but the nameserver reports the remote objects registered there as
listening on local ports 5555 (so called NAT port). This mapping is established by ssh tunnel
between client and the server1. Now consider a case, when application2 receives a proxy of
object located on server1. To operate on that object the communication between server 1 and
server 2 needs to be established, again mapping the local port 5555 to target port 3300 on
server1. Assuming that steering computer already has an established communication link from
itself to Application1 (realized by ssh tunnel from local NAT port 5555 to target port 3300 on the

46/54

server1), an additional communication channel from server2 to steering computer has to be
established (by ssh tunnel connecting ports 5555 on both sides). In this way, the application2
can directly work with remote objects at server 1 (listening on true port 3300) using proxies with
NAT port 5555.

Fig. 15: Establishing a communication link between two application servers via SSH tunnels.

8.4.4. Troubleshooting SSH setup

● Verify that the connection to nameserver host works:
○ ping name_server_hostname

● Run the jobManTest.py with additional option “-d” to turn on debugging output, examine
the output (logged also in mupif.log file)

● Examine the output of server messages printed on screen and/or in file ​server.log

8.5. Using Virtual Private Network (VPN)

8.5.1. Generalities

This section only provides background for VPN and can be skipped. The standard way of node
communication in MuPIF is to use SSH tunnels. SSH tunnels have the following advantages:

● No need for administrator privileges.
● Often the way for remotely accessing computers which are already in use.
● Easy traversal of network firewalls (as long as the standard port 22 is open/tunneled to

the destination).
They also have some disadvantages:

● Non-persistence: the tunnel has to be set up every time again; if connection is
interrupted, explicit reconnection is needed, unless automatic restart happens, e.g.
autossh​.

The tunnel is only bi-directional and does no routing; thus is A-B is connected and B-C is
connected, it does not imply C is reachable from A. Though, it is possible to create a multi-hop
tunnel by chaining ​ssh​ commands.
VPN is an alternative to SSH tunnels, providing the encryption and authorization services. The
VPNs work on a lower level of communication (OSI Layer 2/3) by establishing “virtual” (existing

47/54

http://www.harding.motd.ca/autossh/

on the top of other networks) network, where all nodes have the illusion of direct communication
with other nodes through TCP or UDP, which have IP addresses assigned in the virtual network
space, see Fig. 16. The VPN itself communicates through existing underlying networks, but this
aspect is not visible to the nodes; it includes data encryption, compression, routing, but also
authentication of clients which may connect to the VPN. ​OpenVPN is a major implementation of
VPN, and is supported on many platforms, including Linux, Windows, Android and others.

Using VPN with MuPIF is a trade-off where the infrastructure (certificates, VPN server, …) is
more difficult to set up, but clients can communicate in a secure manner without any additional
provisions - it is thus safe to pass unencrypted data over the VPN, as authentication has been
done already; in particular, there is no need for SSH tunnels

Note that all traffic exchanged between VPN clients will go through the OpenVPN server
instance; the connection of this computer should be fast enough to accommodate all
communication between clients combined.

Fig. 16: VPN architecture

8.5.2. Setup

Setting up the VPN is generally more difficult than ssh tunnels. It comprises the following:
● Communication ports reachable by all clients must be set up as a part of the

infrastructure (usually on a static & public IP address); this involves opening ports in

48/54

https://openvpn.net/

firewalls, and most network administrators are not very keen to do that. While these are
configurable, the default is UDP 1194 for client access; often TCP 443 is also (ab)used
(it is commonly and by standard used for HTTPS).

● Running the OpenVPN daemon on the server; server configuration is not overly
complicated, there are in fact many good tutorials available.

● Distributing OpenVPN configuration files (usually ending .ovpn) to the clients.
● Clients have to connect to the VPN whenever they want to communicate with the

network - this can be done from the command-line or using graphical interfaces.
Whenever a client connects to the OpenVPN server, the following happens:

1. The client is authenticated, either via username/password or certificate.
2. The client is handed an IP address from the VPN range, as specified by ifconfig-pool

configuration option, or assigned a fixed IP based on the client configuration
(client-config-dir), see ​OpenVPN Addressing​.

3. The client’s OS assigns the IP address to a virtual network adapter (tun0, tun1 etc in
Linux) and sets IP routing accordingly. Depending on server configuration, all non-local
traffic (such as to public internet hosts) may be routed through the VPN, or only traffic for
VPN will go through the VPN. At this moment, other clients of the VPN become visible to
the new client, and vice versa (it is client’s responsibility to firewall the VPN interface, if
desired).

There are example scripts to generate OpenVPN configuration for MuPIF in ​tools/vpn​. The
script generates certificate authority and keys used for authentication of server and clients, and
also for traffic encryption; those files must be slightly hand-adjusted for real use afterwards. The
recommended configuration for MuPIF is the following (non-exhaustive; the tutorial from
digitalocean (​www.digitalocean.com/…..​) explains most of the procedure).

1. Use the usual “subnet” network topology.
2. IP addresses within the VPN may be assigned from the address pool, but at least some

machines should have fixed IP - this can be done using the client-config-dir option. In
particular, the Pyro nameserver should have a well-known and stable IP address so that
the client configuration does not have to change; the best is to run the OpenVPN server
on the same computer where Pyro runs, then the IP address will be stable.

3. Only in-VPN traffic should be routed through the VPN (thus the redirect-gateway option
should not be used); communication of clients with Internet will go through the usual ISP
route of each client.

4. Firewall facing internet should allow UDP traffic on port 1194. Optionally, other port can
be used (even non-OpenVPN port, like TCP/443, which is normally used for HTTPS). All
traffic on the tun0 (or other number) interfaces should be allowed; one can use the “-i
tun+” option of iptables to apply a rule to any interface of which name starts with tun.

5. Keepalive option can be used to increase network reliability (functions as both heart-beat
& keep-alive).

6. Authentication can be done using username & password, but key-based authentication
(client keys must be distributed to clients) is recommended.

49/54

https://community.openvpn.net/openvpn/wiki/Concepts-Addressing
https://www.digitalocean.com/community/tutorials/how-to-set-up-an-openvpn-server-on-ubuntu-16-04

7. The server is started either as a daemon (through init.d or systemd) or from the
commandline, in which case “Initialization Sequence Completed” will be shown when
ready to serve clients.

Client configuration:
1. If the configuration is distributed as .ovpn file with embedded keys, the VPN can be

activated from command-line by issuing sudo openvpn --config client.ovpn. The client
will say Initialization Sequence Completed after successful connection to the VPN. Use
Ctrl-C to terminate the client and disconnect from the VPN.

2. The GUI of NetworkManager can import the configuration and use it, but not in all cases
(embedded keys seem to be the problem), in which case the .ovpn file can only contain
filenames where the keys/certs are stored, or the configuration can be created by hand
through the NetworkManager GUI.

3. Connection to the VPN can be verified by issuing “ip addr show” which should show the
tun0 (or similar) interface with an IP assigned from the OpenVPN server pool.

8.5.3. Example of simulation scenario using VPN

The process of allocating a new instance of remote application is illustrated on adapted version
of the local thermo-mechanical scenario, already presented in ​7. Developing user workflows​.
First, the configuration file is created containing all the relevant connection information, see
Listing 5.

#Common configuration for examples
import sys, os, os.path
import Pyro4
Pyro4.config.SERIALIZER="pickle"
Pyro4.config.PICKLE_PROTOCOL_VERSION=2 #to work with python 2.x and 3.x
Pyro4.config.SERIALIZERS_ACCEPTED={'pickle'}
Pyro4.config.SERVERTYPE="multiplex"

#Absolute path to mupif directory - used in JobMan2cmd
mupif_dir = os.path.abspath(os.path.join(os.getcwd(), "../../.."))
sys.path.append(mupif_dir)

#from mupif import logging

#NAME SERVER and SERVER
nshost = '172.30.0.1'#IP/name of a name server
nsport = 9090 #Port of name server
hkey = 'mmp-secret-key'#Password for accessing nameServer and applications

#SERVER for a single job or for JobManager
server = '172.30.0.1' #IP/name of a server's daemon
serverPort = 44382 #Port of server's daemon
jobManName='Mupif.JobManager@Example'#Name of job manager
appName = 'MuPIFServer'#Name of application

50/54

#Jobs in JobManager
portsForJobs=(9095, 9200)#Range of ports to be assigned on the server to jobs
maxJobs=4 #Maximum number of jobs
#Auxiliary port used to communicate with application daemons on a local computer
socketApps=10000
jobManWorkDir='.' #Main directory for transmitting files
jobMan2CmdPath = "../../tools/JobMan2cmd.py" #Path to JobMan2cmd.py

#Name of the application
appName = 'MuPIFServer'

Listing 5: Simple example illustrating simulation scenario

The adapted simulation scenario is presented in Listing 6. This example assumes that the
nameserver and individual application servers (job managers) run on different computers. The
main difference now is that there is no need to create any ssh tunnels so there is also no need
to set ssh related parameters in config file. The listing shows the complete distributed scenario,
with the required modifications highlighted by the blue color. This example is available in MuPIF
distribution under
examples/Example16-thermoMechanicalNonStat-VPN-JobMan​ directory.

import sys
sys.path.extend(['..', '../../..'])
from mupif import *
import mupif
import conf_vpn as cfg

import time as timeTime
start = timeTime.time()
mupif.log.info('Timer started')

#locate nameserver
ns = PyroUtil.connectNameServer(nshost=cfg.nshost, nsport=cfg.nsport,
hkey=cfg.hkey)
#localize JobManager running on (remote) server and create a tunnel to it
#allocate the thermal server
solverJobManRecNoSSH = (cfg.serverPort, cfg.serverPort, cfg.server, '',
cfg.jobManName)

jobNatport = -1

try:

appRec = PyroUtil.allocateApplicationWithJobManager(ns,
solverJobManRecNoSSH, jobNatport, sshClient='manual', options='', sshHost = '')

mupif.log.info("Applocated application %s" % appRec)
thermal = appRec.getApplication()

except Exception as e:
mupif.log.exception(e)

else:

51/54

if thermal is not None:
 appsig=thermal.getApplicationSignature()
 mupif.log.info("Working thermalServer " + appsig)
 mechanical = PyroUtil.connectApp(ns, 'mechanical')

 time = 0.
 dt = 0.
 timestepnumber = 0
 targetTime = 10.0

 while (abs(time - targetTime) > 1.e-6):

 mupif.log.debug("Step: %g %g %g"%(timestepnumber,time,dt))
 # create a time step
 istep = TimeStep.TimeStep(time, dt, timestepnumber)

 try:
 thermal.solveStep(istep)
 f = thermal.getField(FieldID.FID_Temperature, istep.getTime())
 data = f.field2VTKData().tofile('T_%s'%str(timestepnumber))

 mechanical.setField(f)
 sol = mechanical.solveStep(istep)
 f = mechanical.getField(FieldID.FID_Displacement, istep.getTime())
 data = f.field2VTKData().tofile('M_%s'%str(timestepnumber))

 thermal.finishStep(istep)
 mechanical.finishStep(istep)

 # determine critical time step
 dt = min (thermal.getCriticalTimeStep(),
mechanical.getCriticalTimeStep())

 # update time
 time = time+dt
 if (time > targetTime):
 # make sure we reach targetTime at the end
 time = targetTime
 timestepnumber = timestepnumber+1

 except APIError.APIError as e:
 log.error("Following API error occurred:",e)
 break
 mechanical.terminate();

else:
 mupif.log.debug("Connection to thermal server failed, exiting")

finally:

if appRec: appRec.terminateAll()

Listing 6: Simple example illustrating simulation scenario

52/54

9. Acknowledgements

The development of MuPIF has been funded by Grant Agency of the Czech Republic - Projects
No. P105/10/1402.
The development of the platform has been funded by FP7 under NMP-2013-1.4-1 call 1.4-1
"Development of an integrated multi-scale modelling environment for nanomaterials and
systems by design" with Grant agreement no: 604279, entitled ​Multiscale Modelling Platform:
Smart design of nano-enabled products in green technologies​.
The authors would like to acknowledge the EU support from Horizon 2020 Project
Composelector​, Contract N°: 721105

10. References

[1] D1.1 Application Interface Specification, MMP Project, 2014.
[2] D1.2 Software Requirements Specification Document for Cloud Computing, MMP

Project, 2015.
[3] Python Software Foundation. Python Language Reference, version 3.5. Available at

http://www.python.org
[4] Pyro - Python Remote Objects,​ ​http://pythonhosted.org/Pyro
[5] B. Patzák, D. Rypl, and J. Kruis. Mupif – a distributed multi-physics integration tool.

Advances in Engineering Software, 60–61(0):89 – 97, 2013
(​http://www.sciencedirect.com/science/article/pii/S0965997812001329​).

[6] B. Patzak, V. Smilauer, and G. Pacquaut, accepted presentation & paper “​Design of a
Multiscale Modelling Platform​” at the conference ​Green Challenges in Automotive,
Railways, Aeronautics and Maritime Engineering​, 25​th​ - 27​th​ of May 2015, Jyväskylä
(Finland).

[7] B. Patzak, V. Smilauer, and G. Pacquaut, presentation & paper “​Design of a Multiscale
Modelling Platform​” at the ​15 ​th​ International Conference on Civil, Structural, and
Environmental Engineering Computing​, 1​st​ - 4​th​ of September 2015, Prague (Czech
Republic).

[8] B. Patzak, V. Smilauer: MuPIF reference manual 1.0.0, 2016. Available at
https://sourceforge.net/projects/mupif

ChangeLog

● V1.1 (05/2017): ​Expanded section on workflow implementation, added subsections on

workflow templates and workflow as a class. Already describes some concept to be
introduced in ver. 2.0 (transparent ssh tunnel handling using decorator classes). Added
acknowledgement to EU via Composelector project.

53/54

https://sourceforge.net/projects/mupif
http://www.sciencedirect.com/science/article/pii/S0965997812001329
http://www.python.org/
http://mmp-project.eu/
http://mmp-project.eu/
http://pythonhosted.org/Pyro4
http://composelector.net/
http://pythonhosted.org/Pyro
http://pythonhosted.org/Pyro4
http://www.python.org/

ToDo
● Description of metadata support missing

54/54

